Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

First comprehensive analysis of global impact of antimicrobial resistance (AMR) estimates resistance itself caused 1.27 million deaths in 2019 - more deaths than HIV/AIDS or malaria - and that antimicrobial-resistant infections played a role in 4.95 million deaths.

Third-generation cephalosporin-resistant Klebsiella pneumoniae (2019) © Lancet

Estimates for 204 countries and territories confirm AMR as a global health threat, with worst impacts in low- and middle-income countries (LMICs), though higher income countries also face alarmingly high levels of AMR.

Rapid investment in new treatments, improved infection control measures, and optimised use of antibiotics are among the measures that can help countries protect their health systems against the threat of AMR.

More than 1.2 million people – and potentially millions more – died in 2019 as a direct result of antibiotic-resistant bacterial infections, according to the most comprehensive estimate to date of the global impact of antimicrobial resistance (AMR).

The analysis of 204 countries and territories, published in The Lancet, reveals that AMR is now a leading cause of death worldwide, higher than HIV/AIDS or malaria. It shows that many hundreds of thousands of deaths now occur due to common, previously treatable infections – such as lower respiratory and bloodstream infections – because the bacteria that cause them have become resistant to treatment.

The report highlights an urgent need to scale up action to combat AMR, and outlines immediate actions for policymakers that will help save lives and protect health systems. These include optimising the use of existing antibiotics, taking greater action to monitor and control infections, and providing more funding to develop new antibiotics and treatments.

Read the full story on the University of Oxford website. 

Similar stories

Communication at the crossroads of the immune system

In his inaugural article in the Proceedings of the National Academy of Sciences as an NAS member (elected 2021), Prof Mike Dustin and his research team in Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences have explained how messages are passed across the immunological synapse. The research could have implications for future vaccine development and immunotherapy treatments.

Showcase success for Science Together research

A local collaboration teaming researchers from the University of Oxford and Oxford Brookes University with the Urban Music Foundation finished on a high note with an immersive sound and art installation at Oxford’s Old Fire Station.

Oxford spinout trials revolutionary bioelectronic implant to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their “smart” bioelectronic implants.

COVID-19 is a leading cause of death in children and young people in the US

A new study led by researchers at the University of Oxford’s Department of Computer Science has found that, between 2021 and 2022, COVID-19 was a leading cause of death in children and young people in the United States, ranking eighth overall. The results demonstrate that pharmaceutical and public health interventions should continue to be applied to limit the spread of the coronavirus and protect again severe disease in this age group.

Three or more concussions linked with worse brain function in later life

Experiencing three or more concussions is linked with worsened brain function in later life, according to new research.

New blood test could save lives of heart attack victims

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.