Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Conversation logo

The past three decades saw a dramatic improvement in our understanding of what brings about Alzheimer’s disease. Two proteins are thought to be responsible: amyloid and tau. The most widely accepted theory is that a critical level of amyloid in the brain triggers the build-up of the more toxic tau protein. This has led to several studies testing drugs and vaccines that remove amyloid and tau to see if they can improve or even prevent dementia. Results have been disappointing.

All studies in dementia patients have failed to show improvements, even if amyloid itself was affected. In a prominent case, a vaccine given to patients was shown to have cleared the brain of amyloid of people who nonetheless died of profound dementia.

Over the same period, studies in people destined to develop the condition because of a genetic mutation reported that the changes leading to dementia begin up to 25 years before any symptoms. One logical interpretation is that attempts to find a cure for dementia may have failed because the patients in drug trials were treated too late in the disease process.

Read the full article on The Conversation website, written by Ivan Koychev, Clinical Lecturer in Department of Psychiatry

Oxford is a subscribing member of The ConversationFind out how you can write for The Conversation.

Similar stories

Oxford spinout trials revolutionary bioelectronic implant to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their “smart” bioelectronic implants.

COVID-19 is a leading cause of death in children and young people in the US

A new study led by researchers at the University of Oxford’s Department of Computer Science has found that, between 2021 and 2022, COVID-19 was a leading cause of death in children and young people in the United States, ranking eighth overall. The results demonstrate that pharmaceutical and public health interventions should continue to be applied to limit the spread of the coronavirus and protect again severe disease in this age group.

Three or more concussions linked with worse brain function in later life

Experiencing three or more concussions is linked with worsened brain function in later life, according to new research.

New blood test could save lives of heart attack victims

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.

Gero Miesenböck awarded 2023 Japan Prize

Congratulations to Professor Gero Miesenböck, Department of Physiology, Anatomy and Genetics (DPAG), who has been awarded the 2023 Japan Prize in the field of Life Sciences, together with Professor Karl Deisseroth, for pioneering work in the field of optogenetics.