Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The rise of antibiotic resistance in many pathogens has been driven by the spread of a small number of strains, suggesting that some bacteria may be genetically pre-disposed to evolving resistance. Researchers at Oxford University have tested this hypothesis by quantifying differences in evolvability between pathogen strains and by searching for ‘potentiator’ genes that accelerate the evolution of resistance. Their results are published today in Nature Communications.

Bacterial colonies growing on agar plates © Andrei Papkou

Scientists from the Department of Zoology, Oxford University, show that a single gene that codes for an efflux pump predisposes some strains of pathogenic S.aureus to evolve high levels of ciprofloxacin resistance. Bacterial efflux pumps actively pump out chemicals from bacterial cells – sort of like a bacterial bucket brigade – and this an important way that bacteria cope with exposure to a range of toxic chemicals, including antibiotics.

Their experiments involved a common human pathogen, Staphylococcus aureus, that is an important source of antibiotic resistant infections in health care settings (ie MRSA). They used a broad-spectrum antibiotic called ciprofloxacin that was developed in the 1980s, and initially heralded as a solution to MRSA infections.

The full article is available on the University of Oxford website