Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The rise of antibiotic resistance in many pathogens has been driven by the spread of a small number of strains, suggesting that some bacteria may be genetically pre-disposed to evolving resistance. Researchers at Oxford University have tested this hypothesis by quantifying differences in evolvability between pathogen strains and by searching for ‘potentiator’ genes that accelerate the evolution of resistance. Their results are published today in Nature Communications.

Bacterial colonies growing on agar plates © Andrei Papkou

Scientists from the Department of Zoology, Oxford University, show that a single gene that codes for an efflux pump predisposes some strains of pathogenic S.aureus to evolve high levels of ciprofloxacin resistance. Bacterial efflux pumps actively pump out chemicals from bacterial cells – sort of like a bacterial bucket brigade – and this an important way that bacteria cope with exposure to a range of toxic chemicals, including antibiotics.

Their experiments involved a common human pathogen, Staphylococcus aureus, that is an important source of antibiotic resistant infections in health care settings (ie MRSA). They used a broad-spectrum antibiotic called ciprofloxacin that was developed in the 1980s, and initially heralded as a solution to MRSA infections.

The full article is available on the University of Oxford website

Similar stories

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Language learning difficulties in children linked to brain differences

A new study using MRI has revealed structural brain changes in children with developmental language disorder (DLD), a common but under-recognised difficulty in language learning. Children with DLD aged 10-15 showed reduced levels of myelin in areas of the brain associated with speaking and listening to others, and areas involved in learning new skills. This finding is a significant advance in our understanding of DLD and these brain differences may explain the poorer language outcomes in this group.

The Gene Therapists Headline at Glastonbury 2022

Rosie Munday writes about her experience taking science to the masses at the Glastonbury Festival.

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.