Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The short-term effects of excessive drinking are well known, but to date it has been less certain whether alcohol also accelerates the aging process.

Man drinking from a bottle © Shutterstock/Africa Studio

Traditionally, investigating this has been challenging due to the lack of reliable methods to measure biological aging. In addition, it was not clear from observational studies whether alcohol was the true cause of any effect, or if it was linked to other factors, such as socio-economic status.

Today, researchers from Oxford Population Health have published results from a new genetic-based analysis which suggest that alcohol directly accelerates aging by damaging DNA in telomeres. The findings are published today in Molecular Psychiatry.

Telomeres are repetitive DNA sequences that cap the end of chromosomes, protecting them from damage. Telomere length is considered an indicator of biological aging, since 50-100 DNA bases are lost each time a cell replicates. Once telomeres become too short, cells can no longer divide and may even die. Previous studies have linked shorter telomere lengths with several aging-related diseases including Alzheimer’s disease, cancer, and coronary artery disease.

In this analysis, the researchers investigated the association between alcohol intake and telomere length in over 245,000 participants in the UK Biobank. They used a genetic approach called Mendelian Randomisation (MR), the first time this has been applied to investigate the effects of alcohol on aging. This method uses ‘genetic proxies’ to predict the level of exposure for each participant.

Read the full story on the University of Oxford website

Similar stories

Increased risk of some neurological and psychiatric disorders remains two years after COVID-19 infection

New diagnoses of disorders including psychosis, dementia, seizures and ‘brain fog’ remain commoner two years after COVID-19 than after other respiratory infections, whereas the increased risks of depression and anxiety after COVID-19 are short-lived and there is no overall excess of cases.

Sensory Supermarket event helps businesses make public-facing spaces more inclusive for autistic people

Researchers from the Universities of Oxford and Reading – in collaboration with awareness-raising organisation Sensory Spectacle – are hosting an innovative event called Sensory Supermarket as part of the Sensory Street research project.

Genetic mapping of tumours reveals how cancers grow

Researchers from the University of Oxford, KTH Royal Institute of Technology, Science for Life Laboratory, and the Karolinska Institutet, Solna, Sweden, have found that individual prostate tumours contain a previously unknown range of genetic variation.

Tackling suicide risk in people with mental disorders

Clinical researchers from Oxford University’s Department of Psychiatry and Oxford Health NHS Foundation Trust, together with colleagues from elsewhere, have developed guidance to help clinicians identify and treat patients at risk of suicide.

Environmental impact of 57,000 multi-ingredient processed foods revealed

A study estimating the environmental impact of 57,000 food products in the UK and Ireland has been published by an Oxford-led research team in the journal PNAS.

Oxford spinout MiroBio acquired by Gilead Sciences for $405m

The inflammatory diseases company’s rapid ascent and exit underscores the importance of friendships, partnerships and networks in innovation.