Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tammie Bishop

Tammie Bishop

Nuffield Department of Medicine

HYPOXIA AND CANCER

Research interests

My research interests are in understanding the role of hypoxia in cancer. Specifically, we are interested in defining the circumstances and molecular pathways by which hypoxia and hypoxia signalling directly promote cell proliferation. Genetic mutations of hypoxia/HIF signalling pathway components are commonly associated with certain types of cancer e.g. carotid body paragangliomas, adrenal medullary pheochromocytomas, kidney clear cell carcinomas and understanding the mechanisms involved may help with treatment of these cancers. We have shown that Type I cells in the carotid body proliferate in response to hypoxia and that this (like VHL-associated kidney cancer) is dependent on a specific isoform of HIF, HIF-2alpha (Fielding et al., 2018; Hodson et al., 2016). Further, we have shown that unrestrained activation of HIF-2alpha in the mouse carotid body leads to a paraganglioma-like growth (Fielding et al., 2018), mimicking the human genetic condition and providing the first such mouse model to explore the mechanisms and potential therapeutic treatments of this and other HIF-2 dependent cancers.

Background

I read Natural Sciences at Trinity Hall, Cambridge University followed by a PhD at Cambridge University in mitochondrial bioenergetics with Professor Martin Brand. I subsequently came to Oxford as a postdoctoral research scientist to study hypoxia/HIF signalling with Professor Sir Peter Ratcliffe. I currently head a group investigating the role of HIF-2 in hypoxic responses of the carotid body, supervise DPhil students and lecture undergraduate medical students at Oxford about the HIF pathway.

Other roles

I am actively involved in public engagement, for example, giving academic talks to secondary school students as part of Magdalen College, Oxford’s outreach programme.