GROUP MEMBERS
Current:
Ms Jasmine Liu
Mr Ben Gaunt
Ms Nahla Bakhamis
Mr Hakmin Mun
Ms Morgan Wade
Ms Jessica Kerridge (artist-in-residence)
Past:
Dr Nanaso Thorat
Mr Ben White
Mr Chengchen Duan
Dr Tiffany Lodge (PDRA)
Dr Duane Ager (PDRA)
Dr Malgorzata Rybak-Smith (PDRA)
Dr Cindy Huang (PDRA)
Mr Changsong Ri
Ms Marimar Bravo (DPhil candidate)
Ms Felicity Crawshay-Williams
Mr Sandy MacAulay
Ms Rachel Morrison (DPhil candidate)
Ms Anna Evison (Placement student)
Ms Giulia Spadafora (Placement student)
Ms Lucy Taylor (Placement student)
Ms Emily Walport (Materials science 4YP)
Mr Florent Amiot (Visitor, France)
Ms Natalia Barkalina (MSc)
Ms Perita Amakiri
Ms Mashael Al Saud
Mr Greg Bond (Engineering Science, 4YP)
Mr Austin Hwang
EXTERNAL COLLABORATORS:
Prof. Robert Kiss (Universite Libre de Bruxelles)
Prof. Antonio Evidente (Naples University, Italy)
Prof. Alexander Kornienko (Texas, USA)
Townley, Hankins and Thompson groups
Williams Fund stall at Begbroke
Lab group 2017
Townley group
Helen Townley
BSc (Hons), PhD
Nuffield Department of Women's & Reproductive Health
- Williams Fund Research Fellow
- Senior visiting Research Fellow (Engineering Science)
- Associate Editor, Micro and Nano Letters
SUPPORTED BY THE WILLIAMS FUND
Pharmaceutics Special issue, guest editor
RESEARCH
Our research focuses on the use of nanoparticles in cancer for therapy, imaging or drug delivery. The small size of nanoparticles means that they can passively accumulate in tumours due to the enhanced permeation and retention (EPR) effect. The EPR effect is the property by which certain sizes of molecules accumulate more in tumour tissues than in normal tissues. This occurs because newly formed tumour blood vessels are abnormal in form and architecture, and have poorly-aligned endothelial cells with wide fenestrations through which the molecules can pass. Furthermore, tumour tissues lack efficient lymphatic drainage.
Encapsulation of chemotherapy drugs within nanoparticles therefore enables them to be delivered directly to the site of the tumour, reducing systemic side effects, and enabling a higher dose to be reached in the cancerous tissue. Fluorophores and reporter molecules can be added to the nanoparticles for localization, and assessment of the efficacy of the treatment. Microparticle systems have also been developed for chemoembolization, in which the blood supply to the tumour is blocked causing the cancerous tissue to die. Other nanoparticles have also been developed which can be used to enhance the effect of conventional radiotherapy.
Ways in which nanoparticles can help in the fight against cancer are also discussed in a recent Guardian article here
Work on natural products as novel chemotherapeutics
We work together with a number of international colleagues on the application of plant and fungi derived compounds for action against cancers.
See the link for a recent interview:
https://www.researchgate.net/blog/post/finding-cures-for-incurable-cancers-in-nature
See, our latest publication on the use of Citral https://www.dovepress.com/articles.php?article_id=35875
OTHER NANOPARTICLE APPLICATIONS
In addition to cancer treatments, nanoparticles are useful for many other applications and we have collaborated with groups working, for example, on the use of nanoparticles to combat infertility (http://www.ox.ac.uk/media/news_stories/2013/131115_1.html), and for smart biocide delivery to specifically target harmful bacteria (http://www.isis-innovation.com/licensing/9992.html)
Enquiries from prospective DPhil students are always welcome
Guest editor for Biomolecules special issue on nanoparticles for cancer
Articles can be submitted for consideration for publication in the special issue.
Closing date: 30th April 2019
http://www.mdpi.com/journal/biomolecules/special_issues/Nanoparticles-for-Cancer-Therapy
RECOGNITION OF OUR WORK
BioBeat 2016 '50 Movers and Shakers in BioBusiness 2016'
The 2016 report recognises 50 inspirational women in biobusiness in the UK who are challenging the status quo to bring better health to people around the world. The annual BioBeat report highlights 50 inspirational female entrepreneurs, pioneers and advisors across the industry.
RESEARCH IN CONVERSATION
Research in conversation is a series of interviews with researchers across Oxford University.
http://www.ox.ac.uk/research/research-in-conversation/entrepreneurial-academics/helen-townley-and-xerion