Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Image courtesy of Shutterstock

By constructing the first fine-scale map of the British Isles, Oxford University researchers have uncovered distinct geographical groupings of genetically similar individuals across the UK. 

The study, published in the journal Nature, found that:

  • There was no single 'Celtic' genetic group. In fact the Celtic parts of the UK (Scotland, Northern Ireland, Wales and Cornwall) are among the most different from each other genetically. For example, the Cornish are much more similar genetically to other English groups than they are to the Welsh or the Scots. 
  • There are separate genetic groups in Cornwall in Devon, with a division almost exactly along the modern county boundary.
  • The majority of eastern, central and southern England is made up of a single, relatively homogeneous, genetic group with a significant DNA contribution from Anglo-Saxon migrations (10-40% of total ancestry). This settles a historical controversy in showing that the Anglo-Saxons intermarried with, rather than replaced, the existing populations.
  • The population in Orkney emerged as the most genetically distinct, with 25% of DNA coming from Norwegian ancestors. This shows clearly that the Norse Viking invasion (9th century) did not simply replace the indigenous Orkney population.
  • The Welsh appear more similar to the earliest settlers of Britain after the last ice age than do other people in the UK.
  • There is no obvious genetic signature of the Danish Vikings, who controlled large parts of England ('The Danelaw') from the 9th century.
  • There is genetic evidence of the effect of the Landsker line – the boundary between English-speaking people in south-west Pembrokeshire (sometimes known as 'Little England beyond Wales') and the Welsh speakers in the rest of Wales, which persisted for almost a millennium.
  • The analyses suggest there was a substantial migration across the channel after the original post-ice-age settlers, but before Roman times. DNA from these migrants spread across England, Scotland, and Northern Ireland, but had little impact in Wales.
  • Many of the genetic clusters show similar locations to the tribal groupings and kingdoms around end of the 6th century, after the settlement of the Anglo-Saxons, suggesting these tribes and kingdoms may have maintained a regional identity for many centuries.

Read more

Similar stories

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.

How artificial intelligence is shaping medical imaging

Dr Qiang Zhang of the Radcliffe Department of Medicine explains how artificial intelligence is being used to help researchers and physicians interpret medical imaging.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Researchers in Department of Physiology, Anatomy and Genetics have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.

Malaria booster vaccine continues to meet WHO-specified 75% efficacy goal

Researchers from the University of Oxford and their partners have today reported new findings from their Phase 2b trial following the administration of a booster dose of the candidate malaria vaccine, R21/Matrix-M™ – which previously demonstrated high-level efficacy of 77% over the following 12 months in young west African children in 2021.