Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The southeastern US, including much of Texas through to Florida, has ideal conditions for the spread of Zika virus, according to a new study involving Oxford scientists.

© corlaffra - Shutterstock

Image courtesy of Shutterstock

A large portion of global tropical and subtropical regions have highly suitable environmental conditions and are at the greatest risk. These areas are inhabited by over 2.7 billion people.

Scientists led by the University of Oxford and the Institute for Health Metrics and Evaluation, Seattle, have produced a fine-scale global map of Zika virus transmission. This map was produced by identifying areas of the world with similar environmental and socioeconomic characteristics as areas where the virus has been reported so far. These characteristics include simple weather variables such as precipitation and land cover, but also complex temperature-based virus incubation models. Separate analysis produced range maps for the primary mosquito vector of Zika, Aedes aegypti.

Read more

Similar stories

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Language learning difficulties in children linked to brain differences

A new study using MRI has revealed structural brain changes in children with developmental language disorder (DLD), a common but under-recognised difficulty in language learning. Children with DLD aged 10-15 showed reduced levels of myelin in areas of the brain associated with speaking and listening to others, and areas involved in learning new skills. This finding is a significant advance in our understanding of DLD and these brain differences may explain the poorer language outcomes in this group.

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.