Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Thousands of genes are involved in the regulation of our day-to-day metabolism and relatively little is understood about their function. One key protein, an ABC Transporter called ABCC5, has recently been predicted to be a susceptibility gene for Type 2 diabetes. In a new study selected as Editor's Choice in Obesity, Associate Professor Heidi de Wet has confirmed ABCC5's role in energy metabolism and identified the mechanism behind its metabolic impact for the first time.

New study discovers genetic changes linked to leukaemia in children with down2019s syndrome © Shutterstock

A multitude of physiological signals regulates our appetite and metabolism. An empty stomach triggers the “hunger hormone”, Ghrelin, which acts on the brain to stimulate feelings of hunger. When the stomach becomes full, those hunger signals are muted. The arrival of digested food in the small intestine from the stomach engages with hormone-secreting cells known as enteroendocrine cells. These cells are the first point of contact between you and your food: the digested food triggers receptors on these endocrine cells causing them to release hormones into the circulatory system. These hormones have very important downstream effects: they regulate the release of insulin from the pancreas, prompt capillaries to move blood towards the stomach to absorb the food, trigger feelings of satiety in the brain, and interacts with the liver, muscle and fat to enable it to absorb glucose. In essence, “these hormones are spectacularly important because they drive human metabolism in response to food.” explains Professor de Wet.

Read more (Department of Physiology, Anatomy & Genetics website)

Also featured in the Oxford Science Blog (University of Oxford website)