Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

New findings that shed light on how epigenetic components in mammals shape transcription have been published by the Klose group in the Department of Biochemistry.

 

Figure 1. Schematic showing that the chromatin-modifying complex SET1 is targeted to active genes at CpG islands via its component CFP1

Schematic showing that the chromatin-modifying complex SET1 is targeted to active genes at CpG islands via its component CFP1

The Cell Reports paper, a collaborative effort between labs in Oxford, Japan and the USA, reveals how a key histone-modifying enzyme is targeted to promoters and helps ensure appropriate gene expression (1). The findings provide an important step towards understanding how an epigenetic change can influence transcription.

Read more ....

Similar stories

Oxford spinout Optellum secures $14m funding to advance pioneering AI-powered lung cancer diagnosis technology

Optellum, a University of Oxford spinout that provides a breakthrough AI platform to diagnose and treat early-stage lung cancer, has raised $14 million in a Series A funding round.

New study shows higher rate of fractures in people with intellectual disability

In the most comprehensive study of its kind, researchers at the University of Oxford and Oxford Health NHS Foundation Trust found a substantially higher rate of fractures in people with intellectual disability compared with people of the same age and gender without an intellectual disability.

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Language learning difficulties in children linked to brain differences

A new study using MRI has revealed structural brain changes in children with developmental language disorder (DLD), a common but under-recognised difficulty in language learning. Children with DLD aged 10-15 showed reduced levels of myelin in areas of the brain associated with speaking and listening to others, and areas involved in learning new skills. This finding is a significant advance in our understanding of DLD and these brain differences may explain the poorer language outcomes in this group.

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.