Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers at the Botnar Research Centre (Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences) have developed technology that facilitates standalone long-read Oxford Nanopore sequencing of single cells. This breakthrough technology has the potential to open new avenues within genomics and enable future discoveries to understand the causes of many human diseases.

Illustration of a strand of DNA

The work, in part supported by grants from the UKRI (Innovate UK, EPSRC and MRC), results from a collaboration with researchers from the Department of Chemistry at Oxford University, ATDBio, a world leader in complex oligonucleotide chemistry, and pharmaceutical company BristolMyersSquibbs. The study has been published in this week’s issue of Nature Biotechnology

“The application of accurate long-read single-cell sequencing will have a transformative effect on the wider single-cell sequencing community, as longer and full-length transcriptomic sequencing allows users to capture more information about the transcriptional and functional state of a cell,” says Assistant Professor Adam Cribbs, senior author of the paper and Group Leader in Systems Biology and Next Generation Sequencing Analysis at the Botnar Research Centre. “This means that we move closer to being able to better understand and diagnose diseases such as cancer”. 

Read the full story on the Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences website

Similar stories

Drug could help diabetic hearts recover after heart attack - Oxford research

Researchers at the University of Oxford have identified a drug that could ultimately help improve heart function in people with diabetes who have heart attacks.

Largest ever global study of tuberculosis identifies genetic causes of drug resistance

Using cutting-edge genomic sequencing techniques, researchers at the University of Oxford have identified almost all the genomic variation that gives people resistance to 13 of the most common tuberculosis (TB) drug treatments.

Peter Horby receives prestigious award for outstanding service to public health

The Faculty of Public Health (FPH) has awarded its prestigious Alwyn Smith Prize to Professor Sir Peter Horby (Nuffield Department of Medicine) for 2020/2021 in recognition of his outstanding service to public health as a global leader in epidemic science.

Six new Fellowships announced as part of Oxford-Bristol Myers Squibb Fellowships Programme

The Oxford - Bristol Myers Squibb (BMS) Fellowships Programme continued to demonstrate significant progress over the last year, despite the challenges associated with the global pandemic, including restricted lab access and work from home guidance. Today, we are pleased to announce six new Oxford-BMS Fellowships for 2021.

Researchers set out steps to address mental health effects of the pandemic on young people

Researchers have outlined 14 steps that schools, mental health services and policymakers can take to help children and young people whose mental health has been affected by the COVID-19 pandemic.

Anti-cancer drug derived from fungus shows promise in clinical trials

A new industry-academic partnership between the University of Oxford and biopharmaceutical company NuCana as found that chemotherapy drug NUC-7738, derived from a Himalayan fungus, has 40 times greater potency for killing cancer cells than its parent compound.