The work, in part supported by grants from the UKRI (Innovate UK, EPSRC and MRC), results from a collaboration with researchers from the Department of Chemistry at Oxford University, ATDBio, a world leader in complex oligonucleotide chemistry, and pharmaceutical company BristolMyersSquibbs. The study has been published in this week’s issue of Nature Biotechnology.
“The application of accurate long-read single-cell sequencing will have a transformative effect on the wider single-cell sequencing community, as longer and full-length transcriptomic sequencing allows users to capture more information about the transcriptional and functional state of a cell,” says Assistant Professor Adam Cribbs, senior author of the paper and Group Leader in Systems Biology and Next Generation Sequencing Analysis at the Botnar Research Centre. “This means that we move closer to being able to better understand and diagnose diseases such as cancer”.