Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers at the Botnar Research Centre (Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences) have developed technology that facilitates standalone long-read Oxford Nanopore sequencing of single cells. This breakthrough technology has the potential to open new avenues within genomics and enable future discoveries to understand the causes of many human diseases.

Illustration of a strand of DNA

The work, in part supported by grants from the UKRI (Innovate UK, EPSRC and MRC), results from a collaboration with researchers from the Department of Chemistry at Oxford University, ATDBio, a world leader in complex oligonucleotide chemistry, and pharmaceutical company BristolMyersSquibbs. The study has been published in this week’s issue of Nature Biotechnology

“The application of accurate long-read single-cell sequencing will have a transformative effect on the wider single-cell sequencing community, as longer and full-length transcriptomic sequencing allows users to capture more information about the transcriptional and functional state of a cell,” says Assistant Professor Adam Cribbs, senior author of the paper and Group Leader in Systems Biology and Next Generation Sequencing Analysis at the Botnar Research Centre. “This means that we move closer to being able to better understand and diagnose diseases such as cancer”. 

Read the full story on the Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences website

Similar stories

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Language learning difficulties in children linked to brain differences

A new study using MRI has revealed structural brain changes in children with developmental language disorder (DLD), a common but under-recognised difficulty in language learning. Children with DLD aged 10-15 showed reduced levels of myelin in areas of the brain associated with speaking and listening to others, and areas involved in learning new skills. This finding is a significant advance in our understanding of DLD and these brain differences may explain the poorer language outcomes in this group.

The Gene Therapists Headline at Glastonbury 2022

Rosie Munday writes about her experience taking science to the masses at the Glastonbury Festival.

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.