Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Research from Oxford University calls us to reconsider how behaviours may spread through societies of wild animals, and how this might provide new insights into human social networks.

© Shutterstock

Our social connections to one another, whether it be online or in real life, give rise to our 'social networks'. Previously, it has often been assumed that the individuals with the most social connections are the primary 'social influencers' and most likely to acquire, and spread, new behaviours. Behaviours were viewed to spread simply based on the amount of exposure to others, just like contracting a contagious disease might depend on exposure to infected individuals. This viewpoint has not only been applied to humans, but also a range of different animal species too.

However, a new study from Oxford University suggests our understanding of animal behaviours are enhanced by drawing on the latest findings in human systems, which show that the most influential individuals are not necessarily the most social ones. Instead, the most important individuals often tend to be those occurring in tight knit friendship circles. Even though these individuals may have relatively few social connections, they wield high influence within their cliques and promote the rapid spread of new behaviours.

Read more (University of Oxford)

Similar stories

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.

Major new NIHR Global Health Research Unit to focus on data science and genomic surveillance of antimicrobial resistance

The Centre for Genomic Pathogen Surveillance, part of the Big Data Institute at the University of Oxford, has been awarded funding worth £7m for their work as an NIHR Global Health Research Unit (GHRU) for the next five years. The Centre’s research and capacity building work focuses on delivering genomics and enabling data for the surveillance of antimicrobial resistance (AMR).

How artificial intelligence is shaping medical imaging

Dr Qiang Zhang of the Radcliffe Department of Medicine explains how artificial intelligence is being used to help researchers and physicians interpret medical imaging.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Researchers in Department of Physiology, Anatomy and Genetics have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.