Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Changes in the way that neurons communicate with each other affect our ability to move between sleep and wake states.

Woman asleep in bed

In new research published in Science Advances, researchers from our Sleep and Circadian Neuroscience Institute, working with colleagues at MRC Harwell and University College London, have shown that changes in the way that neurons communicate with each other in the brain affect our ability to move between sleep and wake states. These findings bring us closer to understanding the role of specific genes in regulating various sleep stages.

While our bodies sleep, we transition between sleep stages, alternating between non-rapid eye movement (NREM) sleep, rapid eye movement (REM) sleep and wakefulness. These transitions are controlled by structures in the brain, however, the genetic regulation of this is not well understood.

The full story is available on the Nuffield Department of Clinical Neurosciences website

This story is also featured on the Department of Physiology, Anatomy & Genetics website

Similar stories

Oxford vaccine reaches one billion doses released

The University of Oxford’s and our partners AstraZeneca have today announced that one billion doses of the ChAdOx1 nCov-19 coronavirus vaccine have been released, to more than 170 countries, marking a key milestone as part of the University and AstraZeneca’s joint vision to make the available to the world, on a not-for-profit basis for the world during the pandemic, and in perpetuity for low- and middle-income countries.

Research programme tackling COVID-19 variants of concern receives funding boost

A gift from the Red Avenue Foundation will enable the expansion of a major research programme aimed at rapidly identifying and interrogating emerging COVID-19 variants.

Phase I trial begins of new vaccine against the Plague

Researchers at the University of Oxford today launched a Phase 1 trial to test a new vaccine against plague.

New therapeutic targets identified in the treatment of psoriatic arthritis

Researchers identify two inflammatory-driving proteins, osteopontin and CCL2, highly expressed in psoriatic arthritis joints.

Treatment choice for rotator cuff disorders could create efficiency and savings for the NHS

A trial that evaluated the clinical and cost effectiveness of physiotherapy treatments for rotator cuff disorders suggests cost savings can be made while maintaining positive patient outcomes.