Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new approach to targeting key cancer-linked proteins, thought to be ‘undruggable’, has been discovered through an alliance between industry and academia.

Image courtesy of Shutterstock

The study published in Nature shows that two novel and specific small-molecule inhibitors developed by the research teams can bind to and deactivate an enzyme that controls the stability of the p53 tumour suppressor protein. This deactivation allows p53 to be turned on, putting the brakes on cancer growth.

The majority of cancers have a faulty or inactive p53 which allows them grow out of control. But despite its important role in cancer, attempts to target p53 directly have hit a number of dead ends. To get around this problem the researchers in this alliance looked at a specialised system, the ubiquitin-proteasome system, which regulates the turnover of a range of proteins, including p53.

Read more (University of Oxford website)

Similar stories

Language learning difficulties in children linked to brain differences

A new study using MRI has revealed structural brain changes in children with developmental language disorder (DLD), a common but under-recognised difficulty in language learning. Children with DLD aged 10-15 showed reduced levels of myelin in areas of the brain associated with speaking and listening to others, and areas involved in learning new skills. This finding is a significant advance in our understanding of DLD and these brain differences may explain the poorer language outcomes in this group.

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.

How artificial intelligence is shaping medical imaging

Dr Qiang Zhang of the Radcliffe Department of Medicine explains how artificial intelligence is being used to help researchers and physicians interpret medical imaging.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Researchers in Department of Physiology, Anatomy and Genetics have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.