Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers at Oxford University have received a prestigious Wellcome Innovator Grant for investigating the role of the pedunculopontine nucleus (PPN) – a brainstem nucleus – in human consciousness.

Human brain

The study is a collaboration between Neurosurgery (Associate Professor Alex Green, Nuffield Department of Surgical Sciences), Engineering (Professor Tim Denison, MRC Brain Network Dynamics Unit), and Neurology (Dr Damian Jenkins, Nuffield Department of Clinical Neurosciences). It builds on pilot data from Dr Alceste Deli who, during her DPhil, has shown that PPN stimulation can alter sleep and arousal states.

The project will involve a 10-subject first-in-man clinical trial of PPN stimulation in patients with minimally conscious state (MCS) following brain injury (trauma or stroke) and will involve further development of a Deep Brain Stimulation system called the ‘DyNeuMo’ that has been developed in Oxford by Professor Denison and his team.

The research team aim to identify biomarkers that signify arousal state, within the brain and on EEG, and to develop ‘closed-loop’ stimulation patterns that optimise increased arousal and improve sleep. The device will also take into account circadian rhythms that are often disrupted in patients with MCS.

Read the full story on the Nuffield Department of Surgical Sciences website

Similar stories

New computational technique reveals changes to lung function post COVID-19 infection

A new study led by Oxford researchers found that prior COVID-19 infection was associated with more uneven inflation of the lungs during normal breathing, smaller lung volumes, and greater respiratory dead space.

Oxford spinout Optellum secures $14m funding to advance pioneering AI-powered lung cancer diagnosis technology

Optellum, a University of Oxford spinout that provides a breakthrough AI platform to diagnose and treat early-stage lung cancer, has raised $14 million in a Series A funding round.

Celebrating Childhood Cancer Awareness Month

September was Childhood Cancer Awareness Month, and researchers in Department of Paediatrics took action to help raise awareness for this cause.

New study shows higher rate of fractures in people with intellectual disability

In the most comprehensive study of its kind, researchers at the University of Oxford and Oxford Health NHS Foundation Trust found a substantially higher rate of fractures in people with intellectual disability compared with people of the same age and gender without an intellectual disability.

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.