Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

New research from the Department of Physiology, Anatomy and Genetics has shown that in type 2 diabetes an overload of lipids reduces the heart’s ability to generate energy during a heart attack, decreasing chances of recovery.

Virtual image of human heart with cardiogram

In patients with type 2 diabetes, the heart becomes starved of energy, leading to decreased recovery in the event of a heart attack. Diabetes is associated with high blood glucose and high blood lipids. Diabetes research tends to focus on the effects of high glucose, but changes in glucose concentrations do not explain why there is an energy deficit in the heart in type 2 diabetes.

It is known that the heart becomes laden with lipids in diabetes. Yet, there have been very few studies investigating the consequences of these high levels of lipids in the heart. Neither the specific lipids causing the metabolic upheaval that leads to energy starvation in the heart, nor the signalling pathways on which they are exerting these effects, have been identified.

Read the full story on the Department of Physiology, Anatomy and Genetics website

Similar stories

Prestigious award for Oxford professor's diabetes work

A University of Oxford professor has been awarded the 2021 EASD-Novo Nordisk Foundation Prize for Excellence for his decades of effort to understand, prevent and combat type 1 diabetes.

Wellcome accolades for Dr Douglas

Dr Alexander (Sandy) Douglas, an investigator at the Jenner Institute, Nuffield Department of Medicine, has recently received two prestigious Wellcome accolades.

FOCUS4: a flagship trial in colorectal cancer

Professor Tim Maughan (Department of Oncology) outlines the flagship work of the FOCUS4 trials, whose results were presented last weekend at the European Society of Medical Oncology (ESMO) annual meeting

Oxford and Oracle partner to speed identification of COVID-19 variants

The fast spread of the highly infectious Delta variant underscores the need for faster identification of COVID-19 mutations. Uniting governments and medical communities in this challenge, the University of Oxford and Oracle’s Global Pathogen Analysis System (GPAS) is now being used by organizations on nearly every continent. Institutions using the platform include: the University of Montreal Hospital Centre Research Centre, the Institute of Public Health Research of Chile, the Oxford University Clinical Research Unit in Vietnam, the Institute of Clinical Pathology and Medical Research – New South Wales Pathology, and Oxford Nanopore Technologies. GPAS is also now part of the Public Health England New Variant Assessment Platform.

Vaccinated groups at highest risk of Covid-19 hospitalisation and death identified using new QCovid tool

Researchers from the University of Oxford have today reported on findings on the vaccinated people who are at greatest risk from severe Covid-19 leading to hospitalisation or death from 14 days post the second dose vaccination, when substantial immunity should be expected.