Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A recent collaborative study from the University of Oxford has investigated the potential benefit of a combined therapy approach to prostate cancer treatment, using radiotherapy and vascular targeted photodynamic therapy (VTP), which could lead to first-in-man early phase clinical trials.

Machine used for treatment

Each year in the UK around 48,500 men are diagnosed with prostate cancer, and 11,900 die from this malignancy. The most common radical treatments for prostate cancer are surgical removal of the prostate gland (prostatectomy), or radiotherapy (usually combined with hormone treatment). However, there is a need to improve the overall patient outcomes from radical treatment, as many cases of high-risk prostate cancer recur. Moreover, there is an unmet clinical need to reduce radical treatment side effects.

Vascular targeted photodynamic therapy (VTP) is a novel minimally invasive precision surgery technique that has been developed to focally treat prostate cancer. VTP destroys the vasculature supply of blood to the tumour, thereby providing tumour control. To date, VTP has been investigated in clinical trials as a monotherapy for low-volume, low-risk prostate cancer. Whilst VTP has been combined with other treatments such as hormone therapy in pre-clinical models, to date it has not been investigated alongside external beam radiotherapy to assess the effects of combined treatment on prostate cancer tumour control.

A recent study from Associate Professor Richard Bryant and Professor Freddie Hamdy of the Nuffield Department of Surgical Sciences, alongside collaborators in the Institute of Biomedical Engineering and Department of Oncology, and collaborators from the Weizmann Institute of Science (Israel) and the National Cancer Institute (National Institutes of Health, USA), has investigated the impact of combining VTP with external beam radiotherapy treatment, and the potential improvement to treatment outcomes.

Read the full story on the Nuffield Department of Surgical Sciences website

Similar stories

Drug could help diabetic hearts recover after heart attack - Oxford research

Researchers at the University of Oxford have identified a drug that could ultimately help improve heart function in people with diabetes who have heart attacks.

Largest ever global study of tuberculosis identifies genetic causes of drug resistance

Using cutting-edge genomic sequencing techniques, researchers at the University of Oxford have identified almost all the genomic variation that gives people resistance to 13 of the most common tuberculosis (TB) drug treatments.

Peter Horby receives prestigious award for outstanding service to public health

The Faculty of Public Health (FPH) has awarded its prestigious Alwyn Smith Prize to Professor Sir Peter Horby (Nuffield Department of Medicine) for 2020/2021 in recognition of his outstanding service to public health as a global leader in epidemic science.

Six new Fellowships announced as part of Oxford-Bristol Myers Squibb Fellowships Programme

The Oxford - Bristol Myers Squibb (BMS) Fellowships Programme continued to demonstrate significant progress over the last year, despite the challenges associated with the global pandemic, including restricted lab access and work from home guidance. Today, we are pleased to announce six new Oxford-BMS Fellowships for 2021.

Researchers set out steps to address mental health effects of the pandemic on young people

Researchers have outlined 14 steps that schools, mental health services and policymakers can take to help children and young people whose mental health has been affected by the COVID-19 pandemic.

Anti-cancer drug derived from fungus shows promise in clinical trials

A new industry-academic partnership between the University of Oxford and biopharmaceutical company NuCana as found that chemotherapy drug NUC-7738, derived from a Himalayan fungus, has 40 times greater potency for killing cancer cells than its parent compound.