Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers from the University of Oxford have today released their findings about the so-called ‘correlates of protection’ against symptomatic COVID-19; potentially a tool to speed up safe development of new vaccines which may assist regulators in assessing the likely potency of any new COVID-19 vaccine without the need for Phase III efficacy trial data.

 

  • There remains a global shortage of vaccines to prevent COVID-19 and licensing new vaccines could help fill the gap.
  • Researchers identify average antibody levels (called ‘correlates of protection’) required to prevent COVID-19 in populations.
  • Correlates of protection could be used to extrapolate efficacy from trials of new vaccines, and could speed development.

Using an analysis based on COVID-19 cases detected in the United Kingdom, and immune system data from the blood samples of volunteers who took part in the UK trials of the Oxford vaccine, the researchers compare antibody levels in vaccine recipients 28 days after their second dose, and COVID-19 cases that occurred more than 7 days after the blood sample was taken.

Writing on MedRxiv, they report that higher levels of anti-spike, anti-RBD IgG, and neutralising antibody titres were associated with a greater degree of protection against COVID-19 – defined as a PCR positive test with at least one symptom present.

Read the full story on the University of Oxford website

Similar stories

Drug could help diabetic hearts recover after heart attack - Oxford research

Researchers at the University of Oxford have identified a drug that could ultimately help improve heart function in people with diabetes who have heart attacks.

Largest ever global study of tuberculosis identifies genetic causes of drug resistance

Using cutting-edge genomic sequencing techniques, researchers at the University of Oxford have identified almost all the genomic variation that gives people resistance to 13 of the most common tuberculosis (TB) drug treatments.

Peter Horby receives prestigious award for outstanding service to public health

The Faculty of Public Health (FPH) has awarded its prestigious Alwyn Smith Prize to Professor Sir Peter Horby (Nuffield Department of Medicine) for 2020/2021 in recognition of his outstanding service to public health as a global leader in epidemic science.

Six new Fellowships announced as part of Oxford-Bristol Myers Squibb Fellowships Programme

The Oxford - Bristol Myers Squibb (BMS) Fellowships Programme continued to demonstrate significant progress over the last year, despite the challenges associated with the global pandemic, including restricted lab access and work from home guidance. Today, we are pleased to announce six new Oxford-BMS Fellowships for 2021.

Researchers set out steps to address mental health effects of the pandemic on young people

Researchers have outlined 14 steps that schools, mental health services and policymakers can take to help children and young people whose mental health has been affected by the COVID-19 pandemic.

Anti-cancer drug derived from fungus shows promise in clinical trials

A new industry-academic partnership between the University of Oxford and biopharmaceutical company NuCana as found that chemotherapy drug NUC-7738, derived from a Himalayan fungus, has 40 times greater potency for killing cancer cells than its parent compound.