Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A team of researchers from the Medical Research Council (MRC) Weatherall Institute of Molecular Medicine at Oxford University has developed a new technique that allows scientists to reliably track genetic errors in individual cancer cells, and find out how these might lead to uncontrollable growth.

New technique to analyse cancer cells2019 life history could help provide personalised cancer treatment © Shutterstock

Despite recognising that cancer cell diversity underlies treatment resistance and recurrence of cancer, previous attempts to track errors in individual cancer cells were very inaccurate, or could only track a few cells at a time. This is the first time that researchers have been able to reliably track DNA errors, or ‘mutations’ in thousands of individual cancer cells, while also measuring how these mutations lead to disruption to how DNA is read within individual cancer cells in a tumour.

The study, published in the journal Molecular Cell, describes how this new technique, TARGET-seq, can not only detect mutations within individual cancer cells from patients, but also work out the full list of gene products in individual cancer cells (the transcriptome). Tracking these genetic errors, and their consequences, is important, because despite the latest medical advances, completely getting rid of cancer cells is sometimes extremely difficult. As there are many different kinds of cancer cells in a tumour, they can all behave differently and have different kinds of resistant to treatment. Understanding the genetics of individual cancer cells in such detail will help clinicians personalise cancer treatments for each patient.

Read more (University of Oxford website)