Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Department of Physiology, Anatomy & Genetics (DPAG) scientists develop single-cell oxygen saturation imaging to study oxygen handling by red blood cells. New physiological techniques that measure the blood's oxygen saturation are particularly important in light of the current pandemic, as COVID-19 patients present an abnormally low concentration of oxygen in the blood.

Oxygen saturation of blood is a fundamental clinical parameter that assesses how much oxygen is being carried by red blood cells (RBCs). The importance of these so-called oximetery measurements is highlighted by the current COVID-19 crisis because patients present a profound drop in blood oxygen, known as hypoxaemia. However, another aspect of oxygen handling by blood that is not currently measured is the speed with which RBCs exchange gases. Indeed, routinely performed tests for gas-carrying capacity (for example, total hemoglobin) cannot determine how fast RBCs take-up and release oxygen. Such information is critical for evaluating the physiological fitness of RBCs, which have less than one second to exchange large volumes of oxygen in the lungs and tissues.

To address this problem, a team led by Associate Professor Pawel Swietach has designed a method to quantify gas exchange in individual RBCs. Applying this method to various blood disorders has highlighted the barriers to efficient gas exchange. The results identify the adaptations that allow healthy RBCs to exchange gases quickly, and explain how disease-related changes may impair oxygen transport.

Read the full story on the Department of Physiology, Anatomy & Genetics (DPAG) website

Similar stories

Can humans hibernate?

Illuminating new TEDx Talk from Professor of Sleep Physiology Vladyslav Vyazovskiy

Athena Swan Gold Award success for Nuffield Department of Primary Care Health Sciences

The award reflects the Department’s commitment to representation, progression and success for all. It acknowledges the innovative policies and practices developed across the department and the detailed action plans for improvement.

RECOVERY trial team awarded MRC Impact Prize for Outstanding Team Impact

The Medical Research Council Prize Committee has awarded the RECOVERY trial team the MRC Impact Prize 2022 for Outstanding Team Impact.

Professor Sir Chris Whitty brings greater understanding of epidemics to Oxford

Chief Medical Officer of England Professor Sir Chris Whitty KCB FMedSci delivers the Sherrington Prize Lecture: Public Understanding of Science to an audience of Oxford staff and students.

Multiple Debilitating Pains – New global study shows the experience of Endometriosis is rooted in a person’s genetics

Researchers at the University of Oxford in collaboration with 25 teams across the world have published the largest study to date of the genetic basis of endometriosis.

Study shows delaying treatment for localised prostate cancer does not increase mortality risk

Active monitoring of prostate cancer has the same high survival rates after 15 years as radiotherapy or surgery, reports the largest study of its kind.