Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

A new consortium of 27 partners coordinated by the Nuffield Department of Clinical Neurosciences will tackle the challenge of discovery and characterisation of blood-brain barrier targets and transport mechanisms for brain delivery of therapeutics to treat neurodegenerative and metabolic diseases.

New research to investigate role of blood brain barrier in neurological conditions

The blood-brain barrier is a protective layer between the brain’s blood capillaries and the cells that make up brain tissue. This barrier provides a defence against the pathogens and toxins that may be in our blood, allowing very few molecules to pass through. It can also prevent many drugs from passing across into the brain, and this presents a major problem in treating neurological conditions and metabolic diseases, especially when using antibody therapies. On the other hand, several neurological diseases could originate from a dysfunctional blood-brain barrier.

The funding from the Innovative Medicines Initiative (IMI) to the IM2PACT consortium will allow this public-private partnership, which includes leading international experts in the field, to facilitate the development of drugs to treat neurological disorders by: 

  • discovering and developing innovative and effective brain transport mechanisms
  • establishing and characterising blood-brain barrier models with good predictability in health and disease
  • identifying translational read-outs closer to the pathogenesis of neurodegeneration and mimicking altered blood-brain barrier under disease conditions
  • in-depth understanding of the biology of the blood-brain barrier and characterisation of various pathophysiological mechanisms across the blood-brain barrier.

Read more (Nuffield Department of Clinical Neurosciences website)