Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new consortium of 27 partners coordinated by the Nuffield Department of Clinical Neurosciences will tackle the challenge of discovery and characterisation of blood-brain barrier targets and transport mechanisms for brain delivery of therapeutics to treat neurodegenerative and metabolic diseases.

Two researchers working in a lab

The blood-brain barrier is a protective layer between the brain’s blood capillaries and the cells that make up brain tissue. This barrier provides a defence against the pathogens and toxins that may be in our blood, allowing very few molecules to pass through. It can also prevent many drugs from passing across into the brain, and this presents a major problem in treating neurological conditions and metabolic diseases, especially when using antibody therapies. On the other hand, several neurological diseases could originate from a dysfunctional blood-brain barrier.

The funding from the Innovative Medicines Initiative (IMI) to the IM2PACT consortium will allow this public-private partnership, which includes leading international experts in the field, to facilitate the development of drugs to treat neurological disorders by: 

  • discovering and developing innovative and effective brain transport mechanisms
  • establishing and characterising blood-brain barrier models with good predictability in health and disease
  • identifying translational read-outs closer to the pathogenesis of neurodegeneration and mimicking altered blood-brain barrier under disease conditions
  • in-depth understanding of the biology of the blood-brain barrier and characterisation of various pathophysiological mechanisms across the blood-brain barrier.

Read more (Nuffield Department of Clinical Neurosciences website)

Similar stories

Jenner Institute named Covid Innovation Heroes

The team at the University of Oxford’s Jenner Institute has been celebrated for their global pandemic work by The Oxford Trust’s Covid Innovation Heroes Award­ 2021.

New Research Highlights Importance of Early Years Development on Future Wellbeing

Oxford researchers involved nearly 4,000 children across the UK in three specially developed science lessons to educate pupils about brain development during early childhood. The SEEN (Secondary Education around Early Neurodevelopment) project was commissioned and funded by KindredSquared and is part of a wider drive to increase public understanding of how early experiences can shape the adults we become.

Study reveals ‘stop-eating’ response to DNA damage

A new study from the MRC Weatherall Institute of Molecular Medicine sheds light on the mechanism by which DNA damage suppresses appetite, a finding with implications for understanding the appetite lowering side-effects of chemotherapy.

World’s first cancer prevention trial to test diabetes drug in patients with high-risk genetic condition

Oxford researchers will lead a £2m national cancer prevention trial to assess the benefit a diabetes drug has in patients with Li Fraumeni Syndrome (LFS), a genetic condition that impacts 1 in 20,000 people worldwide and puts them at a 70-90% lifetime risk of cancer.

Oxford-led research maps milestone stage of human development for the first time

Scientists have shed light on an important stage of early embryonic development that has never been fully mapped out in humans before.