Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

The discovery of a new way to target and treat the leading genetic contributor to Parkinson's may open the way for a potential new clinical treatment.

None © Shutterstock

Researchers from Department of Physiology, Anatomy and Genetics (DPAG) have identified how the dysfunction of a key protein, LRRK2, causes the neurons affected in Parkinson's to lose their ability to effectively clear out cell components that have been damaged. This discovery has enabled the team to find a new way to target and correct this issue, paving the way for a potential new clinical treatment.

Parkinson’s is a motor disorder caused by the loss of a specific sub-set of neurons located in the midbrain. Although the underlying mechanisms leading to the death of these neurons is still not well understood, one of the leading theories is that they die as they accumulate protein aggregates.

Read more (University of Oxford website)

Watch an interview with Professor Richard Wade-Martins (DPAG website)