Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The release of dopamine in the brain plays a key role in determining how we respond when we perceive a potential reward or benefit. But so far little has been understood about the mechanism behind this. A new paper from Department of Physiology, Anatomy & Genetics has uncovered a dominant regulator of the dynamics of dopamine output.

None

Dopamine in the striatum of the brain is critical to the selection and learning of our motivated actions. Dopamine neurons input into a system called the basal ganglia which regulates our voluntary actions and helps us to respond particularly to something we perceive as having a benefit or rewarding property, and consequently carrying motivational value. Dopamine helps us select actions and learn from the associations we make between a stimulus, our action and its outcome, to change the way we might respond next time.

A new paper from Department of Physiology, Anatomy & Genetics (DPAG), published in Nature Communications, has managed to uncover some surprising observations on this unusual neuronal network. Unlike for many other types of synapses in the brain, the team has found that the short-term plasticity in dopamine release is not very sensitive to calcium and initial release probability. Instead, it shows a form of release-insensitive depression. By detecting dopamine and imaging calcium in axons, results suggest that the critical mechanisms are those that shape the ability to depolarise or repolarise axons.

Read more (DPAG website)

Similar stories

Labelling proteins through the diet gives new insights into how collagen-rich tissues change as we age

A new study, published in eLife, uses advanced tissue analysis technology to show how the incorporation of new proteins changes in bone and cartilage with age.

Drug could help diabetic hearts recover after heart attack - Oxford research

Researchers at the University of Oxford have identified a drug that could ultimately help improve heart function in people with diabetes who have heart attacks.

Largest ever global study of tuberculosis identifies genetic causes of drug resistance

Using cutting-edge genomic sequencing techniques, researchers at the University of Oxford have identified almost all the genomic variation that gives people resistance to 13 of the most common tuberculosis (TB) drug treatments.

Peter Horby receives prestigious award for outstanding service to public health

The Faculty of Public Health (FPH) has awarded its prestigious Alwyn Smith Prize to Professor Sir Peter Horby (Nuffield Department of Medicine) for 2020/2021 in recognition of his outstanding service to public health as a global leader in epidemic science.

Six new Fellowships announced as part of Oxford-Bristol Myers Squibb Fellowships Programme

The Oxford - Bristol Myers Squibb (BMS) Fellowships Programme continued to demonstrate significant progress over the last year, despite the challenges associated with the global pandemic, including restricted lab access and work from home guidance. Today, we are pleased to announce six new Oxford-BMS Fellowships for 2021.

Researchers set out steps to address mental health effects of the pandemic on young people

Researchers have outlined 14 steps that schools, mental health services and policymakers can take to help children and young people whose mental health has been affected by the COVID-19 pandemic.