Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In a new Oxford Science Blog, George Busby (Big Data Institute) discusses his team's research into human genetic resistance to malaria and humanity's age-old struggle against the disease.

Humans have long been thwarted by ‘the fever’. References to malaria’s infamous febricity are found across antiquity, from writings by the four thousand-year-old Vedic sages of ancient India to the Greek physician Hippocrates. But the disease, caused by a group of parasites belonging to the Plasmodium genus, has troubled our ancestors and close relatives for much longer. A range of malaria species infect apes, monkeys and birds across the tropical world and we now know that about 50,000 years ago the ancestors of Plasmodium falciparum, the parasite responsible for most of the current human burden of the disease, transformed from infecting gorillas to parasites that can infect us.

This means that throughout our history, wherever the ecological conditions have been able to support the mosquitoes that transmit the disease (including the marshes of Kent well into the 19th Century) we’ve been accompanied by the blood parasite which many believe to be one of the largest killers of people in human history. Reports of malaria killing half of the people who have ever lived are likely to be wide of the mark, however.

Given this shared history, you might expect humans to have evolved ways to neutralise the devastating impact of malaria. In evolutionary terms, the stakes are high - falciparum malaria is most deadly in young children - so there is a clear advantage to adapting to beat the parasite. And, because evolution works with new mutations in DNA that cause genes to work in new and different ways, adaptations that gave our ancestors one up against the parasites should be found across the human genome.

Read more (Oxford Science Blog)

Similar stories

Cancer Research UK to invest £11 million into cancer science in Oxford

A £11 million Cancer Research UK investment has been awarded to the University of Oxford and Oxford-based NHS to catalyse the translation of its world-leading cancer research for patient benefit.

Review highlights risk factors associated with violence in schizophrenia

Researchers at Oxford University’s Department of Psychiatry have found that people with schizophrenia and related disorders are at higher-than-average risk of perpetrating violence, but that the overall risk remains low (less than 1 in 20 in women, and less than 1 in 4 for men over a 35-year period for violent arrests and crimes).

An estimated 1.2 million people died in 2019 from antibiotic-resistant bacterial infections

First comprehensive analysis of global impact of antimicrobial resistance (AMR) estimates resistance itself caused 1.27 million deaths in 2019 - more deaths than HIV/AIDS or malaria - and that antimicrobial-resistant infections played a role in 4.95 million deaths.

Attention and memory deficits persist for months after recovery from mild Covid

Researchers from Oxford’s Department of Experimental Psychology and Nuffield Department of Clinical Neurosciences have shown that people who have had Covid but don’t complain of long Covid symptoms in daily life nevertheless can show degraded attention and memory for up to 6-9 months.

Plaster cast or metal pins to treat a broken wrist? The results are in.

An Oxford study published in The BMJ has found the use of metal K-wires (commonly known as ‘pins’) to hold broken wrist bones in place while they heal are no better than a traditional moulded plaster cast.

New book expands the horizons of brain research

A pioneering book from Professor Zoltán Molnár and Yale Professors Tamas Horvath and Joy Hirsch to be released on 1 February 2022 addresses the fundamental relationship between the body, brain and behaviour.