Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
© NanD_PhanuwatTH - Shutterstock

With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars? According to a new study published in the International Journal of Epidemiology this week, genetic research in large-scale prospective biobank studies can significantly improve the drug development pipeline and reduce costs.

New treatments are discovered by exploring biological pathways that cause disease but can be modified by drugs. The route from the basic biology to large-scale randomized trials in humans is long and expensive – estimated at over $1.2 billion to get one product to market. In part, that cost is because the route to a successful drug is littered with those that have fallen by the wayside at various points during development. However, a study of one such unsuccessful drug has pointed to a way that could reduce costs.

Read more

Similar stories

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Major boost for Oxford’s mission to counter future pandemic threats

The Moh Family Foundation has given a substantial gift to support the work of Oxford University’s Pandemic Sciences Institute, greatly strengthening its ability to identify and counter future pandemic threats and ensure equitable access to treatments and vaccines around the world.

Three NHSBT research units launch at University of Oxford

The NIHR has awarded three new Blood and Transplant Research Units (BTRUs) to the University of Oxford.

Fourth COVID-19 vaccine dose provides stronger immunity boost than third dose, shows UK study

COVID-19 vaccines given as fourth doses in the UK offer excellent boosting immunity protection, according to the latest results from a nationwide NIHR-supported study.

COVID-19’s high blood clot risk

A recent study of patient health records found that around 1 in 100 people with COVID-19 had a venal or arterial thrombosis, with rates higher still among males, and particularly for those hospitalised.

Medical Sciences Division receives REF 2021 results

Today the UK Funding Bodies have published the outcomes of the recent national research assessment exercise, the Research Excellence Framework (REF) 2021. REF is the UK-wide assessment of research in universities, and provides an expert evaluation of the quality of the research outputs, impact and environment at subject level in each university.