Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The rhythm with which individual sperm move could explain why some successfully fertilise the female egg and others fail, a new Oxford University collaboration has found.

Image courtesy of Shutterstock

From studying the rhythmic movements, researchers at the Universities of York, Birmingham, Oxford and Kyoto University, Japan, have developed a mathematical formula which makes it easier to understand and predict how sperm make the journey to fertilise an egg.

This knowledge will help scientists to gauge why some sperm are successful in fertilisation and others are not, potentially helping to treat male infertility.

Read more

Similar stories

Oxford vaccine reaches one billion doses released

The University of Oxford’s and our partners AstraZeneca have today announced that one billion doses of the ChAdOx1 nCov-19 coronavirus vaccine have been released, to more than 170 countries, marking a key milestone as part of the University and AstraZeneca’s joint vision to make the available to the world, on a not-for-profit basis for the world during the pandemic, and in perpetuity for low- and middle-income countries.

Phase I trial begins of new vaccine against the Plague

Researchers at the University of Oxford today launched a Phase 1 trial to test a new vaccine against plague.

New therapeutic targets identified in the treatment of psoriatic arthritis

Researchers identify two inflammatory-driving proteins, osteopontin and CCL2, highly expressed in psoriatic arthritis joints.

Treatment choice for rotator cuff disorders could create efficiency and savings for the NHS

A trial that evaluated the clinical and cost effectiveness of physiotherapy treatments for rotator cuff disorders suggests cost savings can be made while maintaining positive patient outcomes.

Neutrophil molecular wiring revealed: transcriptional blueprint of short-lived cells

Researchers publish the first blueprint of transcriptional factors that control neutrophil-driven inflammation in Nature Immunology.