Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Research from Department of Physiology, Anatomy & Genetics sheds light on a vicious cycle that causes specialised pancreatic cells to fail in their function to maintain healthy bloody sugar levels.

The pancreas produces the hormone insulin which is secreted from specialised cells called Beta cells (β-cells) into the bloodstream in response to a rise in circulating glucose. Insulin facilitates sugar absorption from the blood into other tissues, such as the heart, muscle and fat, where it is metabolised to create energy. This process is crucial in order to regulate the body’s blood sugar level and avoid hyperglycaemia, which means there is too much glucose in the blood.

Type 2 diabetes (T2D) now affects more than 450 million people worldwide. The socioeconomic burden of the disease is substantial because it markedly increases mortality, morbidity and health care costs. T2D arises when β-cells fail to secrete adequate amounts of insulin in order to maintain blood sugar levels within a normal, healthy range. The underlying mechanism behind why this happens is not well understood.

Read more (Department of Physiology, Anatomy & Genetics)

Similar stories

Prestigious award for Oxford professor's diabetes work

A University of Oxford professor has been awarded the 2021 EASD-Novo Nordisk Foundation Prize for Excellence for his decades of effort to understand, prevent and combat type 1 diabetes.

Wellcome accolades for Dr Douglas

Dr Alexander (Sandy) Douglas, an investigator at the Jenner Institute, Nuffield Department of Medicine, has recently received two prestigious Wellcome accolades.

FOCUS4: a flagship trial in colorectal cancer

Professor Tim Maughan (Department of Oncology) outlines the flagship work of the FOCUS4 trials, whose results were presented last weekend at the European Society of Medical Oncology (ESMO) annual meeting

Oxford and Oracle partner to speed identification of COVID-19 variants

The fast spread of the highly infectious Delta variant underscores the need for faster identification of COVID-19 mutations. Uniting governments and medical communities in this challenge, the University of Oxford and Oracle’s Global Pathogen Analysis System (GPAS) is now being used by organizations on nearly every continent. Institutions using the platform include: the University of Montreal Hospital Centre Research Centre, the Institute of Public Health Research of Chile, the Oxford University Clinical Research Unit in Vietnam, the Institute of Clinical Pathology and Medical Research – New South Wales Pathology, and Oxford Nanopore Technologies. GPAS is also now part of the Public Health England New Variant Assessment Platform.

Vaccinated groups at highest risk of Covid-19 hospitalisation and death identified using new QCovid tool

Researchers from the University of Oxford have today reported on findings on the vaccinated people who are at greatest risk from severe Covid-19 leading to hospitalisation or death from 14 days post the second dose vaccination, when substantial immunity should be expected.