Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

An Oxford-led study has identified the antibodies that may hold the key to creating the first effective vaccine against malaria infection in the blood.

© Shutterstock

Researchers from the University of Oxford, along with partners from five institutions around the world, have identified the human antibodies that prevent the malaria parasite from entering blood cells, which may be key to creating a highly effective malaria vaccination. The results of the study were published today in the journal Cell.

“Following an infectious mosquito bite, the malaria parasite goes first to the human liver, and then moves into the blood. Here it replicates ten-fold every 48 hours inside red blood cells – it is this blood-stage of the infection that leads to illness and can be fatal,” explains study author Simon Draper, Professor of Vaccinology and Translational Medicine at the Nuffield Department of Medicine, University of Oxford. “The malaria parasite has a protein called RH5, which must bind to a human protein on red blood cells called basigin in order to infect them. In this study, we were able to demonstrate which human antibodies effectively block RH5 from binding with basigin, thus preventing the parasite from spreading through the blood.”

Read more (University of Oxford website)

Similar stories

Oxford announces the founding of the new Bennett Institute for Applied Data Science

The Bennett Institute for Applied Data Science at the University of Oxford has been established to pioneer the better use of data, evidence and digital tools in healthcare and policy, optimizing the impact of interventions to achieve improved outcomes.

Researchers develop machine learning algorithm to diagnose deep vein thrombosis

A team of researchers are developing the use of an artificial intelligence (AI) algorithm with the aim of diagnosing deep vein thrombosis (DVT) more quickly and as effectively as traditional radiologist-interpreted diagnostic scans, potentially cutting down long patient waiting lists and avoiding patients unnecessarily receiving drugs to treat DVT when they don’t have it.

COVID-19 recovery project nominated for HSJ award

The project, involving Oxford University Hospitals, Defence Medical Services (DMS), and the Radcliffe Department of Medicine is in the running for a prestigious honour at the Health Service Journal Awards 2021.

Oxford to assess revolutionary multi-cancer blood test in trial, for future implementation in the NHS

A partnership between the University of Oxford and GRAIL, LLC will evaluate the use of a new, non-invasive, multi-cancer early detection test known as Galleri in suspected cancer patients.

'Finding our Way: An NHS Tribute Garden' at RHS Chelsea Flower Show 2021

‘Finding Our Way – An NHS Tribute Garden’ is a celebration of the incredible efforts of the thousands of people who fought – and are still fighting - the COVID-19 pandemic on our behalf. The garden is designed by Naomi Ferrett-Cohen and presented by Oxford University Hospitals NHS Foundation Trust and Oxford University.