Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Our perception of time can depend on a number of factors – what we’re doing, how much we’re focusing on it, how we’re feeling. But there's also quite a bit of variability between us in our individual sense of time passing.

Researchers at Oxford University have investigated what plays a part in our perception of short, fleeting times of under a second.

In a new paper published today in the Journal of Neuroscience, they show that levels of a chemical in the brain – a neurotransmitter called GABA – accounts for some of the difference in our perceptions of subsecond intervals in what we’re seeing.

Read more

Similar stories

Five ways the pandemic has affected routine medical care

Since the beginning of the pandemic, COVID has infected at least a third of the UK population and is estimated to have factored in the deaths of almost 200,000 people in the UK. But critically, COVID has also had a devastating impact on our healthcare systems. While this was expected, new evidence is beginning to reveal the scope of the issue – in particular the effects for people living with long-term health conditions.

Clinical trials for a malaria vaccine start in Mali and Indonesia

Sanaria Inc. announced that two new Phase 2 trials of its pioneering malaria vaccines have started. The first is in 6- to 10-year-old children living in Bancoumana, Mali, a malarious region of West Africa. The second is in Indonesian soldiers based in Sumatra, Indonesia. The soldiers will be deploying for six to nine months this coming August to an intensely malarious district in eastern Indonesia.

Researchers discover novel form of adaptation in the auditory system

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.

20 minutes of daily exercise can keep teens' doctors away

Teenagers should exercise vigorously for at least 20 minutes per day to reap increased cardiorespiratory fitness (CRF), according to a cross-sectional study from the UK led by University of Oxford researchers.

Mechanism of expanding bacteria revealed

A new study published in Nature has identified a potential Achilles heel in the protective layers surrounding Gram-negative bacteria that could aid in the development of next-generation antibiotics.

Discovery of gene involved in chronic pain creates new treatment target

Oxford researchers have discovered a gene that regulates pain sensitisation by amplifying pain signals within the spinal cord, helping them to understand an important mechanism underlying chronic pain in humans and providing a new treatment target.