Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Until September BBC Gardeners’ World magazine is running a monthly feature ‘Grow Yourself Healthy’. The May issue focuses on how gardens and gardening can improve sleep, and featured Julie Darbyshire, researcher for the University of Oxford Critical Care Research Group (Nuffield Department of Clinical Neurosciences), alongside other sleep researchers and experts, discussing the benefits of gardening ahead of the RHS flagship flower show in Chelsea.

None

If you’re not tired, you’re not going to fall asleep. It is perhaps obvious when you think about it, but many of us don’t. We all know we should have 30 minutes of exercise every day but with today’s hectic lifestyle many of us struggle to find the time. Thankfully, for the gym-phobic amongst us with memories of wet and cold cross-country days across the muddy school playing field, exercise needn’t be always about running, or going to the gym. Ever tried digging over a flower bed or veg plot? Gardening can be a great way to achieve an all-body workout. It can also be a low-impact path to being a little bit more active. Some gentle pottering in the garden (beneficial in itself) can lead to other tasks, which leads to more physical exertion, which can only ever be a good thing... But physical exercise is not the only way that gardening can help you sleep at night.

Sleep is hugely influenced by your natural circadian rhythm. Every cell in the human body has a clock that’s controlled by the suprachiasmatic nucleus (SCN) in the brain. The SCN is linked directly to the eyes. Light then, is a key driver to circadian control. Research has demonstrated if you put people into dark places with no external clues to the time of day, their circadian rhythms will become abnormal very quickly. The body needs appropriate exposure to daylight to regulate the body’s responses to help ‘reset’ this clock and keep you “on time”. Many of us spend the majority of the day inside. Light levels in an office, even close to a window, will be far below those of bright natural daylight which is around 20,000 lux. The spectrum of light inside is also quite different. Natural daylight is quite ‘blue’ (5000-6500K) and the body expects a change to more orange/red tones as the day fades to night. This is one of the reasons why ‘screen time’ in the evening isn’t good when you are supposed to be preparing for sleep. The light entering the eyes is too blue for the time of day. Spending the majority of the day inside where light levels are both low (lux levels around 150 are not uncommon) and often in the ‘warmer’ spectrum range (<3000K) is biologically confusing. Getting outside, getting a bit out of breath, and even being a bit chilly, are the best ways to regulate your body clock.

Read more (Oxford Science Blog, University of Oxford website)

Similar stories

Cancer Research UK to invest £11 million into cancer science in Oxford

A £11 million Cancer Research UK investment has been awarded to the University of Oxford and Oxford-based NHS to catalyse the translation of its world-leading cancer research for patient benefit.

Review highlights risk factors associated with violence in schizophrenia

Researchers at Oxford University’s Department of Psychiatry have found that people with schizophrenia and related disorders are at higher-than-average risk of perpetrating violence, but that the overall risk remains low (less than 1 in 20 in women, and less than 1 in 4 for men over a 35-year period for violent arrests and crimes).

An estimated 1.2 million people died in 2019 from antibiotic-resistant bacterial infections

First comprehensive analysis of global impact of antimicrobial resistance (AMR) estimates resistance itself caused 1.27 million deaths in 2019 - more deaths than HIV/AIDS or malaria - and that antimicrobial-resistant infections played a role in 4.95 million deaths.

Attention and memory deficits persist for months after recovery from mild Covid

Researchers from Oxford’s Department of Experimental Psychology and Nuffield Department of Clinical Neurosciences have shown that people who have had Covid but don’t complain of long Covid symptoms in daily life nevertheless can show degraded attention and memory for up to 6-9 months.

Plaster cast or metal pins to treat a broken wrist? The results are in.

An Oxford study published in The BMJ has found the use of metal K-wires (commonly known as ‘pins’) to hold broken wrist bones in place while they heal are no better than a traditional moulded plaster cast.

New book expands the horizons of brain research

A pioneering book from Professor Zoltán Molnár and Yale Professors Tamas Horvath and Joy Hirsch to be released on 1 February 2022 addresses the fundamental relationship between the body, brain and behaviour.