Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
The Conversation logo

We are entering a new era as a species. For the first time, we are not only able to read our genetic code but also edit it. This will revolutionise our ability to treat disease and it will improve the lives of millions if not billions of people. But it means that, if we want to, we can now edit human embryos to “improve” the characteristics of our children. We will be able to create designer babies and these changes will be passed on to their descendants, which will change the human species forever.

It is worth thinking about the scale of what we can now do. The human genome is made up of 3 billion characters, which is about ten times the size of Encyclopaedia Britannica. This contains all the information needed to make a human, and it determines nearly all our characteristics as individuals (not only height, athletic performance and IQ but also our personality and even political views). We completed the first sequence of the human genome around 20 years ago at a cost of US $2.7 billion. We can now sequence a genome for less than the cost of an MRI scan.

Read the full article on The Conversation website, written by James Davies, Postdoctoral Researcher, MRC Weatherall Institute of Molecular Medicine (Radcliffe Department of Medicine).

Oxford is a subscribing member of The ConversationFind out how you can write for The Conversation.

Similar stories

Latest data on immune response to COVID-19 reinforces need for vaccination, says Oxford-led study

A new study led by the University of Oxford has found that previous infection, whether symptomatic or asymptomatic, does not necessarily protect you long-term from COVID-19, particularly against new Variants of Concern.

First trimester placental scan - Artificial Intelligence in Health and Care Award

A first trimester 3D placental ultrasound scan which can predict fetal growth restriction and pre-eclampsia, could become part of a woman's routine care thanks to a new Artificial Intelligence in Health and Care Award.

Impaired antibody response to COVID-19 vaccination in patients with myeloid blood cancers

Oxford researchers have found that antibody responses to the first doses of COVID-19 vaccine in people with chronic myeloid blood cancers are not as strong as those among the general population.

Treating Needle Fears May Reduce COVID-19 Vaccine Hesitancy Rates by 10%

A new large-scale study shows that a quarter of the UK adult population screens positive for a potential injection phobia.

RECOVERY trial Regeneron’s monoclonal antibody combination reduces deaths for hospitalised COVID-19 patients

The Randomised Evaluation of COVID-19 Therapy (RECOVERY) trial has demonstrated that the investigational antibody combination developed by Regeneron reduces the risk of death when given to patients hospitalised with severe COVID-19 who have not mounted a natural antibody response of their own.

Major new study could help protect millions of people with type 2 diabetes from cardiovascular disease

A new study led by the Nuffield Department of Population Health at the University of Oxford will research whether a daily tablet could help protect the millions of people worldwide with type 2 diabetes from developing cardiovascular disease.