Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
The Conversation logo

We are entering a new era as a species. For the first time, we are not only able to read our genetic code but also edit it. This will revolutionise our ability to treat disease and it will improve the lives of millions if not billions of people. But it means that, if we want to, we can now edit human embryos to “improve” the characteristics of our children. We will be able to create designer babies and these changes will be passed on to their descendants, which will change the human species forever.

It is worth thinking about the scale of what we can now do. The human genome is made up of 3 billion characters, which is about ten times the size of Encyclopaedia Britannica. This contains all the information needed to make a human, and it determines nearly all our characteristics as individuals (not only height, athletic performance and IQ but also our personality and even political views). We completed the first sequence of the human genome around 20 years ago at a cost of US $2.7 billion. We can now sequence a genome for less than the cost of an MRI scan.

Read the full article on The Conversation website, written by James Davies, Postdoctoral Researcher, MRC Weatherall Institute of Molecular Medicine (Radcliffe Department of Medicine).

Oxford is a subscribing member of The ConversationFind out how you can write for The Conversation.

Similar stories

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Major boost for Oxford’s mission to counter future pandemic threats

The Moh Family Foundation has given a substantial gift to support the work of Oxford University’s Pandemic Sciences Institute, greatly strengthening its ability to identify and counter future pandemic threats and ensure equitable access to treatments and vaccines around the world.

Three NHSBT research units launch at University of Oxford

The NIHR has awarded three new Blood and Transplant Research Units (BTRUs) to the University of Oxford.

Fourth COVID-19 vaccine dose provides stronger immunity boost than third dose, shows UK study

COVID-19 vaccines given as fourth doses in the UK offer excellent boosting immunity protection, according to the latest results from a nationwide NIHR-supported study.

COVID-19’s high blood clot risk

A recent study of patient health records found that around 1 in 100 people with COVID-19 had a venal or arterial thrombosis, with rates higher still among males, and particularly for those hospitalised.

Medical Sciences Division receives REF 2021 results

Today the UK Funding Bodies have published the outcomes of the recent national research assessment exercise, the Research Excellence Framework (REF) 2021. REF is the UK-wide assessment of research in universities, and provides an expert evaluation of the quality of the research outputs, impact and environment at subject level in each university.