Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Angkor Wat, Cambodia © Roberto Amato
Angkor Wat, Cambodia

Largest genome-wide study of parasite provides clearest picture yet of genetic changes driving artemisinin resistance.

The largest genome-wide association study to date of the malaria parasite Plasmodium falciparum unveils a complex genetic architecture that enables the parasite to develop resistance to our most effective antimalarial drug, artemisinin. The results could help to improve early detection of emerging artemisinin resistance.

The global research collaboration analysed 1612 samples from 15 locations in Southeast Asia and Africa finding 20 mutations in the kelch13 gene, a known artemisinin resistance marker, that appear to work in concert with a set of background mutations in four other genes to support artemisinin resistance.

“Our findings suggest that these background mutations emerged with limited impact on artemisinin resistance — until mutations occurred in the kelch13 gene,” explains Dr Roberto Amato, a first author and Research Associate in Statistical Genomics at the Wellcome Trust Sanger Institute and Oxford University’s Wellcome Trust Centre for Human Genetics. “It’s similar to what we see with pre-cancerous cells which accumulate genetic changes but only become malignant when they acquire critical driver mutations that kick-off growth.”

The variety of kelch13 mutations associated with artemisinin resistance, with new variants continually emerging, makes it difficult to use this gene alone as a marker for genetic surveillance.

Monitoring parasite populations for a specific genetic background – in this case, a fixed set of four well-defined mutations in the fd, arps10, mdr2, and crt genes – could allow researchers to assess the likelihood of new resistance-causing mutations emerging in different locations, helping to target high-risk regions even before resistant parasites take hold.

“We are at a pivotal point for malaria control. While malaria deaths have been halved, this progress is at risk if artemisinin ceases to be effective,” says Nick Day, Director of the Mahidol-Oxford Tropical Medicine Research Unit (MORU) in Bangkok, Thailand. “We need to use every tool at our disposal to protect this drug. Monitoring parasites for background mutations could provide an early warning system to identify areas at risk for artemisinin resistance.”

Researchers also uncovered new clues about how artemisinin resistance has evolved in Southeast Asia. By comparing parasites from Cambodia, Vietnam, Laos, Thailand, Myanmar and Bangladesh, scientists found that the distribution of different kelch13 mutations are localised within relatively well-defined geographical areas.

Whilst artemisinin resistant parasites do appear to have migrated across national borders, this only happened on a limited scale and, in fact, the most widespread kelch13 mutation, C580Y, appeared to have emerged independently on several occasions. Notably parasites along the Thailand-Myanmar border appear to have acquired this mutation separately from those in Cambodia and Vietnam. Crucially, parasite populations in both regions possess the genetic background mutations, even though they are clearly genetically distinct.

There remain many unanswered questions. “We don’t yet know the role of these background mutations,” says Dr Olivo Miotto, a first author and Senior Informatics Fellow at MORU and the Centre for Genomics and Global Health. “Some may not affect drug resistance directly, but rather provide an environment where drug resistance mutations are tolerated. Since kelch13 has hardly changed in 50 million years of Plasmodium evolution, we can assume that this gene is essential to parasite survival. Therefore, kelch13 mutations may severely handicap mutant parasites, compromising their survival unless some other change can counteract this negative effect.”

Mutations in the kelch13 gene were present, yet rare, in Africa but weren't associated with artemisinin resistance and lacked the genetic background present in artemisinin-resistant parasites in Southeast Asia. This provides some reassurance for public health authorities working to prevent the spread of artemisinin resistance to Africa where most malaria deaths occur.

“These data serve as a reminder of how crucial surveillance and elimination programmes are,” says Professor Dominic Kwiatkowski, who is head of the Malaria Programme at the Wellcome Trust Sanger Institute and Professor of Genomics and Global Health at Oxford University. “At present artemisinin resistance appears to be largely confined to Southeast Asia but the situation might change as the parasite population continues to evolve. By linking genomic data with clinical data we’re developing a better understanding of the multiple genetic factors involved in the emergence of resistance, and that is starting to provide vital clues about how to prevent its spread.

Further information

Similar stories

FOCUS4: a flagship trial in colorectal cancer

Professor Tim Maughan (Department of Oncology) outlines the flagship work of the FOCUS4 trials, whose results were presented last weekend at the European Society of Medical Oncology (ESMO) annual meeting

Oxford and Oracle partner to speed identification of COVID-19 variants

The fast spread of the highly infectious Delta variant underscores the need for faster identification of COVID-19 mutations. Uniting governments and medical communities in this challenge, the University of Oxford and Oracle’s Global Pathogen Analysis System (GPAS) is now being used by organizations on nearly every continent. Institutions using the platform include: the University of Montreal Hospital Centre Research Centre, the Institute of Public Health Research of Chile, the Oxford University Clinical Research Unit in Vietnam, the Institute of Clinical Pathology and Medical Research – New South Wales Pathology, and Oxford Nanopore Technologies. GPAS is also now part of the Public Health England New Variant Assessment Platform.

Vaccinated groups at highest risk of Covid-19 hospitalisation and death identified using new QCovid tool

Researchers from the University of Oxford have today reported on findings on the vaccinated people who are at greatest risk from severe Covid-19 leading to hospitalisation or death from 14 days post the second dose vaccination, when substantial immunity should be expected.

Com-COV vaccine mix-and-match study expands to 12-to-16-year-olds

Researchers running the University of Oxford-led Com-COV programme have launched a new study of COVID-19 vaccination schedules in young people aged 12 to 16.

Researchers develop machine learning algorithm to diagnose deep vein thrombosis

A team of researchers are developing the use of an artificial intelligence (AI) algorithm with the aim of diagnosing deep vein thrombosis (DVT) more quickly and as effectively as traditional radiologist-interpreted diagnostic scans, potentially cutting down long patient waiting lists and avoiding patients unnecessarily receiving drugs to treat DVT when they don’t have it.

COVID-19 recovery project nominated for HSJ award

The project, involving Oxford University Hospitals, Defence Medical Services (DMS), and the Radcliffe Department of Medicine is in the running for a prestigious honour at the Health Service Journal Awards 2021.