Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Variations in DNA at a specific location (or 'locus') on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.

Kateryna Kon - Shutterstock

Image courtesy of Shutterstock

Published today in Nature, the findings detail a new gene locus that can explain why, in communities where everyone is constantly exposed to malaria, some children develop severe malaria and others don’t.  Now, researchers can be sure that this particular stretch of our DNA plays a crucial role in the progression of the disease.

In 2013, the World Health Organisation estimated that worldwide 584 000 people died from malaria, 90% of which were children under five living in Africa, while 198 million were infected.

Read more