Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Variations in DNA at a specific location (or 'locus') on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.

© Kateryna Kon - Shutterstock

Image courtesy of Shutterstock

Published today in Nature, the findings detail a new gene locus that can explain why, in communities where everyone is constantly exposed to malaria, some children develop severe malaria and others don’t.  Now, researchers can be sure that this particular stretch of our DNA plays a crucial role in the progression of the disease.

In 2013, the World Health Organisation estimated that worldwide 584 000 people died from malaria, 90% of which were children under five living in Africa, while 198 million were infected.

Read more

Similar stories

Population-scale study highlights ongoing risk of COVID-19 in some cancer patients despite vaccination

COVID-19 vaccination is effective in most cancer patients, but the level of protection against COVID-19 infection, hospitalisation and death offered by the vaccine is less than in the general population and vaccine effectiveness wanes more quickly.

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Major boost for Oxford’s mission to counter future pandemic threats

The Moh Family Foundation has given a substantial gift to support the work of Oxford University’s Pandemic Sciences Institute, greatly strengthening its ability to identify and counter future pandemic threats and ensure equitable access to treatments and vaccines around the world.

Three NHSBT research units launch at University of Oxford

The NIHR has awarded three new Blood and Transplant Research Units (BTRUs) to the University of Oxford.

Fourth COVID-19 vaccine dose provides stronger immunity boost than third dose, shows UK study

COVID-19 vaccines given as fourth doses in the UK offer excellent boosting immunity protection, according to the latest results from a nationwide NIHR-supported study.