Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new collaborative drug discovery project in Friedreich’s Ataxia (FA) between the University of Oxford, Ataxia UK, Pfizer Inc, UCL and Imperial College London was recently announced.

The collaboration was initiated by Ataxia UK, the national charity for people living with ataxia. It brings together academic researchers who will work together with Pfizer scientists based both in the US (Cambridge MA) and at Pfizer’s new Genetic Medicine Institute in London.

Friedreich's ataxia is an inherited, progressive disorder that affects co-ordination, balance and speech [1] with patients typically left unable to walk around 15 years after diagnosis.[2]

Dr Michele Lufino, the University of Oxford researcher leading the collaboration commented: “Finding therapies for Friedreich’s Ataxia is a challenging undertaking which requires a radically novel research approach. At Oxford we believe that collaboration is key to succeed in this complex task and for this reason we are particularly proud of the collaboration that Ataxia UK has helped establish by bringing together leading researchers from industry and academia.”

The programme will initially run for three years and aims to develop a potential new medicine or therapy for Friedreich’s ataxia that, if successful, may be tested in clinical trials. The following academic researchers will conduct the investigations:

  • Dr Michele Lufino, from the Department of Physiology, Anatomy and Genetics at the University of Oxford, who has developed methods to study the effect of drugs in cell and animal models of FA and to better understand the FA mechanism of disease.
  • Dr Paola Giunti from University College London, who brings her basic research studies on the functionality of the frataxin protein in cell and animal models and clinical expertise from running the London Ataxia Centre.
  • Professor Richard Festenstein from Imperial College, London, who has expertise on the frataxin gene regulation and has recently completed a clinical trial of nicotinamide in FA patients with Dr Giunti.

“The research model created with the help of Ataxia UK brings an increased patient focus to our efforts. I’m excited by the potential of bringing together the collective wisdom of three of the UK’s top ataxia researchers from three of the world’s finest universities. Collaborative models like this represent the future for rare diseases research, where everyone pools resources with a common purpose of trying to accelerate medicine discovery in an area of significant unmet need,” says Michael Skynner, Head of the Pfizer Rare Disease Consortium.

This collaboration signifies another positive step forward towards strengthening research partnerships for the purpose of accelerating drug discovery within the rare disease community

Note:

More information on rare disease research in Oxford and how to work with us can be found at www.rarediseases.ox.ac.uk.

This programme adds to a portfolio of collaborative research projects previously announced between Oxford and the Pfizer Rare Disease Consortium; an initiative initially signed between Pfizer and the six UK universities which form GMEC (University of Oxford, University College London, King’s College London, University of Cambridge, Imperial College London and Queen Mary’s College London).



[1] NHS Choices. Accessed at http://www.nhs.uk/conditions/Ataxia/Pages/Introduction.aspx. Last accessed July 2015

[2] Patient info: Friedreich’s ataxia. Accessed at  http://patient.info/doctor/friedreichs-ataxia. Last accessed July 2015

Similar stories

New form of gift wrap drives male reproductive success

General Research

A study from the Department of Physiology, Anatomy and Genetics (DPAG) has identified a new communication mechanism that ensures the transfer of a complex mix of signals and nutrients required for successful reproduction between males and females.

PRINCIPLE trial finds antibiotics azithromycin and doxycycline not generally effective treatments for COVID-19

Coronavirus COVID-19 General Research

In March 2020, the UK-wide Platform Randomised trial of INterventions against COVID-19 In older people (PRINCIPLE) trial was established as a flexible, platform randomised clinical trial to test a range of potential treatments for COVID-19 that might be suitable for use in the community to help people recover more quickly and prevent the need for hospital admission. The trial is one of three national platform trials for COVID-19 treatments, and complements the RECOVERY and REMAP-CAP trials that focus on hospitalised patients.

Early animal studies yield promising results for new potential COVID-19 vaccine

Coronavirus COVID-19 General Research

Studies carried out in the MRC Human Immunology Unit (MRC HIU) in collaboration with the Pirbright Institute have shown that a new potential vaccine against COVID-19, named RBD-SpyVLP, produces a strong antibody response in mice and pigs, providing vital information for the further development of the vaccine. Although this type of vaccine is not a competitor for the first wave of vaccines, it is hoped that it will be useful as a standalone vaccine or as a booster for individuals primed with a different COVID-19 vaccine.

Just over half of British Indians would take COVID vaccine

Coronavirus COVID-19 General Research

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.

Investigating New Treatment for Schizophrenia

General Innovation Research

A partnership between University of Oxford, the Earlham Institute, and the global pharmaceutical companies Biogen Inc and Boehringer Ingelheim is announced today to investigate a new drug target for the treatment of schizophrenia.