Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Collaborative research between teams from the Department of Paediatrics and the Institut de Myologie shows how antisense oligonucleotides can penetrate muscles to treat myotonic dystrophy type 1, a rare muscle disease.

About 9,500 people in the UK suffer from a form of myotonic dystrophy – a rare genetic disease affecting the neuromuscular system. Myotonic dystrophy type 1 (DM1) is the most frequent muscular dystrophy in adults, with an estimated prevalence of 1/8000. DM1 causes progressive muscle weakness and wasting, and a difficulty of muscles to relax after contraction; there is currently no cure for this debilitating and deadly neuromuscular disease.

Why is treating DM1 so challenging? On a molecular level, the disease is linked to a mutation in the DMPK gene. This genetic anomaly consists of an increase in the repeat number of a small three-nucleotide DNA sequence, which results in an accumulation of mutated DMPK RNA in the cell's nucleus. This in turn leads to a perturbation of the proper functioning of cells. Several rare genetic diseases may be treated using antisense oligonucleotides (synthesised RNA fragments) acting on the mutated RNA. However, in myotonic dystrophy type 1, unlike in other muscular dystrophies, the membrane barrier of muscle fibres is not weakened, which means that the antisense oligonucleotides cannot cross it easily. The reduced penetration leads to a reduced efficiency of the treatment.

Read more (MDUK Oxford Neuromuscular Centre website)

Similar stories

Drug could help diabetic hearts recover after heart attack - Oxford research

Researchers at the University of Oxford have identified a drug that could ultimately help improve heart function in people with diabetes who have heart attacks.

Largest ever global study of tuberculosis identifies genetic causes of drug resistance

Using cutting-edge genomic sequencing techniques, researchers at the University of Oxford have identified almost all the genomic variation that gives people resistance to 13 of the most common tuberculosis (TB) drug treatments.

Peter Horby receives prestigious award for outstanding service to public health

The Faculty of Public Health (FPH) has awarded its prestigious Alwyn Smith Prize to Professor Sir Peter Horby (Nuffield Department of Medicine) for 2020/2021 in recognition of his outstanding service to public health as a global leader in epidemic science.

Six new Fellowships announced as part of Oxford-Bristol Myers Squibb Fellowships Programme

The Oxford - Bristol Myers Squibb (BMS) Fellowships Programme continued to demonstrate significant progress over the last year, despite the challenges associated with the global pandemic, including restricted lab access and work from home guidance. Today, we are pleased to announce six new Oxford-BMS Fellowships for 2021.

Researchers set out steps to address mental health effects of the pandemic on young people

Researchers have outlined 14 steps that schools, mental health services and policymakers can take to help children and young people whose mental health has been affected by the COVID-19 pandemic.

Anti-cancer drug derived from fungus shows promise in clinical trials

A new industry-academic partnership between the University of Oxford and biopharmaceutical company NuCana as found that chemotherapy drug NUC-7738, derived from a Himalayan fungus, has 40 times greater potency for killing cancer cells than its parent compound.