Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Collaborative research between teams from the Department of Paediatrics and the Institut de Myologie shows how antisense oligonucleotides can penetrate muscles to treat myotonic dystrophy type 1, a rare muscle disease.

About 9,500 people in the UK suffer from a form of myotonic dystrophy – a rare genetic disease affecting the neuromuscular system. Myotonic dystrophy type 1 (DM1) is the most frequent muscular dystrophy in adults, with an estimated prevalence of 1/8000. DM1 causes progressive muscle weakness and wasting, and a difficulty of muscles to relax after contraction; there is currently no cure for this debilitating and deadly neuromuscular disease.

Why is treating DM1 so challenging? On a molecular level, the disease is linked to a mutation in the DMPK gene. This genetic anomaly consists of an increase in the repeat number of a small three-nucleotide DNA sequence, which results in an accumulation of mutated DMPK RNA in the cell's nucleus. This in turn leads to a perturbation of the proper functioning of cells. Several rare genetic diseases may be treated using antisense oligonucleotides (synthesised RNA fragments) acting on the mutated RNA. However, in myotonic dystrophy type 1, unlike in other muscular dystrophies, the membrane barrier of muscle fibres is not weakened, which means that the antisense oligonucleotides cannot cross it easily. The reduced penetration leads to a reduced efficiency of the treatment.

Read more (MDUK Oxford Neuromuscular Centre website)

Similar stories

Having a healthier heart associated with better problem-solving and reaction time

General Research

People with healthier heart structure and function appear to have better cognitive abilities, including increased capacity to solve logic problems and faster reaction times, according to a study involving University of Oxford and Queen Mary University of London (QMUL) researchers.

Eoghan Mulholland receives prestigious Lee Placito Research Fellowship

Awards and Appointments General

Dr Eoghan Mulholland has received the prestigious Lee Placito Research Fellowship in Gastrointestinal Cancer. Eoghan will use this 3-year position to research cell interactions in colorectal cancers.

Eleven Oxford professors honoured by the Academy of Medical Sciences

Awards and Appointments General

The Academy of Medical Sciences has elected 11 University of Oxford biomedical and health scientists to its fellowship.