Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The earliest known progenitor of the outermost layer of the heart has been characterised for the first time and linked to the development of other critical cell types in the developing heart in a new paper from the Department of Physiology, Anatomy & Genetics.

Frontal view of a developing mouse heart used in the study

The heart is the first organ to form during development and is critical for the survival of the embryo. The forming heart is very small, less than half a millimetre in width, and so far the precise molecular identity of the various cell types that make up the heart during these early stages have been poorly defined. However, recent years have seen rapid development in techniques which allow an unbiased assessment of molecular identity at the single cell level. Alongside this, advances in imaging technologies have now allowed researchers to visualise heart formation at high resolution and in real time.

In new research led by Department of Physiology, Anatomy & Genetics researcher Dr Richard Tyser and Dr Ximena Ibarra-Soria, the team combined these cutting-edge technologies to profile the molecular identity and precise locations of cells involved in the formation of the mouse embryonic heart. This allowed them to identify the earliest known progenitor of the epicardium, the outermost layer of the heart and an important source of signals and cells during cardiac development and injury.

The full story is available on the Department of Physiology, Anatomy & Genetics website