Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers at the University of Oxford have proposed an evolutionary framework to understand why microbes living in the gut affect the brain and behaviour, published in Nature Reviews Microbiology.

Katerina Johnson (Department of Experimental Psychology) and Kevin Foster (Department of Zoology) assessed data from studies on the gut-brain axis to suggest how ‘that gut feeling’ evolved.

Research has shown that gut bacteria (especially species belonging to Lactobacillus and Bifidobacterium) can influence social behaviour, anxiety, stress and depressive-like behaviour. Katerina explained: “We know there are numerous possible mechanisms, including communication via the vagus nerve (major nerve linking the gut and brain), the immune system and hormonal changes, as well as the production of neuroactive chemicals by gut microbes. But why should we expect gut bacteria to affect behaviour at all?” In their paper, Johnson and Foster consider the evolutionary pressures that may have led to ‘that gut feeling’.

Find out more (University of Oxford website)

Similar stories

Oxford vaccine reaches one billion doses released

The University of Oxford’s and our partners AstraZeneca have today announced that one billion doses of the ChAdOx1 nCov-19 coronavirus vaccine have been released, to more than 170 countries, marking a key milestone as part of the University and AstraZeneca’s joint vision to make the available to the world, on a not-for-profit basis for the world during the pandemic, and in perpetuity for low- and middle-income countries.

Phase I trial begins of new vaccine against the Plague

Researchers at the University of Oxford today launched a Phase 1 trial to test a new vaccine against plague.

New therapeutic targets identified in the treatment of psoriatic arthritis

Researchers identify two inflammatory-driving proteins, osteopontin and CCL2, highly expressed in psoriatic arthritis joints.

Treatment choice for rotator cuff disorders could create efficiency and savings for the NHS

A trial that evaluated the clinical and cost effectiveness of physiotherapy treatments for rotator cuff disorders suggests cost savings can be made while maintaining positive patient outcomes.

Neutrophil molecular wiring revealed: transcriptional blueprint of short-lived cells

Researchers publish the first blueprint of transcriptional factors that control neutrophil-driven inflammation in Nature Immunology.