Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

 A new study from researchers in the Department of Biochemistry has shed light on machinery that causes virulence in a group of pathogenic bacteria including Shigella and Salmonella.

The work from Professor Judy Armitage's lab, led by Dr Andreas Diepold, reveals intriguing features of the injectisome, an essential virulence factor that is responsible for the transmission of bacterial proteins into host cells. These proteins allow the bacteria to proliferate without being eliminated by the host immune system.

Published in PLoS Biology with collaborators from the Department of Physics in Oxford and the Biozentrum in Basel, the findings suggest the possibility of a novel target for the development of anti-virulence drugs. (1)

Read more (Department of Biochemistry website)

Biochemistry - Bacterial type III

The bacterial Type III secretion injectisome which injects effector proteins directly into the host cell.

 

1. Composition, Formation, and Regulation of the Cytosolic C-ring, a Dynamic Component of the Type III Secretion Injectisome. Diepold A, Kudryashev M, Delalez NJ, Berry RM and Armitage JP. PLoS Biol 13(1): e1002039. doi:10.1371/journal.pbio. 1002039

Similar stories

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Major boost for Oxford’s mission to counter future pandemic threats

The Moh Family Foundation has given a substantial gift to support the work of Oxford University’s Pandemic Sciences Institute, greatly strengthening its ability to identify and counter future pandemic threats and ensure equitable access to treatments and vaccines around the world.

Three NHSBT research units launch at University of Oxford

The NIHR has awarded three new Blood and Transplant Research Units (BTRUs) to the University of Oxford.

Fourth COVID-19 vaccine dose provides stronger immunity boost than third dose, shows UK study

COVID-19 vaccines given as fourth doses in the UK offer excellent boosting immunity protection, according to the latest results from a nationwide NIHR-supported study.

COVID-19’s high blood clot risk

A recent study of patient health records found that around 1 in 100 people with COVID-19 had a venal or arterial thrombosis, with rates higher still among males, and particularly for those hospitalised.

Medical Sciences Division receives REF 2021 results

Today the UK Funding Bodies have published the outcomes of the recent national research assessment exercise, the Research Excellence Framework (REF) 2021. REF is the UK-wide assessment of research in universities, and provides an expert evaluation of the quality of the research outputs, impact and environment at subject level in each university.