Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hundreds of dietary supplements have been reported to improve cognitive and emotional function in humans, but few have scientific foundation. A new study from the Department of Physiology, Anatomy & Genetics (DPAG) provides fresh insight into how dietary magnesium supplementation can influence memory performance.

Fluorescent close up of the fly brain showing that a key magnesium transporter dominates the neurons involved in memory.
The fly CNNM protein (green, shown to cover the entire area) is abundant in memory-relevant neurons in the fly brain

Prior research has shown that supplementing the diet of young and aging rodents with Magnesium improves their memory and it even appears to partially restore memory deficits in animals harbouring models of Alzheimer’s disease. Magnesium may therefore have therapeutic potential for humans with memory issues.

Yanying Wu, a Postdoctoral Fellow in DPAG's Waddell group, first showed that Magnesium feeding also improved memory of fruit flies (Drosophila). According to Professor Scott Waddell: “We reasoned that if Magnesium enhanced fly memory, this would indicate that it is a general feature of memory systems, and would allow us to analyse the underlying biology." Importantly, the memory-enhancing effects of Magnesium appear to involve a different mechanism to that previously proposed in rodents. The Waddell group found that a conserved Magnesium transporter (known as a Cyclin M2 or CNNM protein) was essential for normal and Magnesium-enhanced memory. Magnesium feeding increased the levels of Magnesium in memory-relevant neurons and the CNNM transporter is critical to regulate these elevated levels.

The full story is available on the Department of Physiology, Anatomy & Genetics website

Similar stories

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Language learning difficulties in children linked to brain differences

A new study using MRI has revealed structural brain changes in children with developmental language disorder (DLD), a common but under-recognised difficulty in language learning. Children with DLD aged 10-15 showed reduced levels of myelin in areas of the brain associated with speaking and listening to others, and areas involved in learning new skills. This finding is a significant advance in our understanding of DLD and these brain differences may explain the poorer language outcomes in this group.

The Gene Therapists Headline at Glastonbury 2022

Rosie Munday writes about her experience taking science to the masses at the Glastonbury Festival.

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.