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Health implications of neurodegenerative disease

* Prevalence of dementia rises from 5% to over 30% between the ages
of 65 and 85 year old

« Each year 150,000 people in UK develop cognitive impairment and
memory loss; within 5 years half will have dementia

* Alzheimer’s disease costs the country ~£23 billion per year,
approximately 20% of the UK health budget

 Number of people in UK over 60 now out-number those under 16

« Worldwide problem: e.g. China
e 2009: 130 million people over 60

« 2040 Estimated to have more people with dementia than the entire
developed world put together
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Dementia funding does not match the costs

Costs Research spending

140,000

£ bilions

For every £1 million in care costs for

Dementia costs more than the disease:

cancer + heart disease £129,269 is spent on cancer research
£73,153 on heart disease research

£8,745 on stroke research
just £4,882 on dementia research.
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Mouse modelling of neurodegenerative disease

« AIM: Understand molecular mechanisms / identify therapeutic targets

« Advantages
— Brain structure / behaviour / in vivo
— Genetics / manipulation (KO / Kl / KD / conditional / inducible)
— Fast generation times - access to tissue / pre-symptomatic

« Disadvantages
— Models reflect human pathology?
— Timing — late-onset disease — expensive

Disease =2 mouse / mouse = disease
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BAC transgenics as more ‘physiological’ genetic models

Human BAC transgene
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* “Humanised” transgenic mouse models
Human disease mutation on mouse KO

* Spatial and temporal regulation of expression
e.g. our SNCA Tg mice

e Multiple splice variants expressed
e.g. our MAPT Tg mice

* Physiological levels of transgene expression
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a- v- synuclein double knockout mice show
Increased dopamine release in striatum
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Harwell ENU mutagenesis — from mouse to disease gene
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Ataxia and movement disorders

» Heterogeneous group of neurological diseases - symptoms often progressive and
range from minor co-ordination difficulties to an inability to walk

* Prevalence: up to 5in 100,000
« >50 forms of inherited ataxia
» Genetic cause only identified in one-third of ACDA/SCAs

« Mouse models of ataxia have provided some new insights into disease mechanisms,
however no treatments are available
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Anti-calbindin

3 weeks

control

robotic
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Anti-calbindin

5 weeks

control

robotic
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Behavioural testing

e Ataxia is progressive (6, 10, 20, 40w testing)
» Accelerating rotarod
« Static beam
» Footprint analysis
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Mutation detection

e Mutation identified in conserved region of Af4:
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Expression of Af4
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Robotic - questions

No obvious link between mutant gene (Af4) and phenotype

Af4 knockout mouse: No ataxia or cataracts or CNS lesions
« Subtle T-cell developmental defects
* Robotic therefore gain-of-function?

ALF proteins putative transcription factors
» Direct effect of mutation on TA activity?
« Targets of Af4? / cause of cell death?
« Expression profiling of Rob/+ and +/+ cerebellum

Protein binding partners of Af4 in the brain
* Yeast two-hybrid screen with wild-type and mutant Af4 baits

 Different +ves? / affinity?




Siah proteins

 E3 ubiquitin ligase

« Homologues of Drosophila seven in abstentia (sina)

o Substrate recognition / facilitiates transfer of ubiquitin to target
protein for degradation by the proteasome
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The robotic mutation is predicted to impair the interaction Siah-1/ Af4
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Robotic mutation blocks degradation of Af4 by Siah

Co-IP in HEK293T cells
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Siah mediates Af4 degradation through
Ub-proteasomal pathway

Co-IP in HEK293T cells
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Accumulation of Af4 in robotic tissues
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« How does Af4 regulate transcription?
 How does an increase in Af4 cause neurodegeneration?
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Af4: links to chromatin remodelling

AF4 forms a complex with ENL/AF9 to activate
P-TEFb

P-TEFb phosphorylates Pol Il and DSIF/NELF
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Transcriptional targets?

Cause of cell death in robotic?
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Expression profiling of the robotic cerebellum

* RNA purified from laser-capture micro-dissected Purkinje cells:
— Af4 specifically expressed in Purkinje cells
— 4 +/+ 4 Rob/+ mice used at 3 weeks of age
— 2,500 cells (8 hours+) individually dissected from cerebellar sections
— Total of 8-12ng of RNA purified
— Affymetrix whole genome chips hybridised (Sheena - OXION)
— Data / pathway analysis
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New targets regulated by Af4

 Expression changes confirmed by gRT-PCR — IGF-I down-regulated
* |IGF-I confirmed as target for Af4 (repression)

« Af4 critical regulator of IGF-I signalling pathway

vehicle IGF-1

Lobes I-lll

Lobe IV

Bitoun & Finelli et al. J.Neurosci
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Moonwalker

« Ataxic gait, retropulsion on
smooth surface

o Smaller size (60-70%)

» Late-onset PC loss —
hemispheres more susceptible

* Rotarod testing: similar
performance to WT

» Static rod testing: performs badly
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Moonwalker - characterisation and cloning

« Point mutation identified in conserved residue of Trpc3 cation channel -
highly expressed in Purkinje cells

» Electrophysiology — channel is over-active (Maike Glitsch)
» Organotypic slice cultures — defects in PC development
e Ataxia patient screening

* Role of TRPC3 in calcium signalling
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Bella

e Severe ataxia
* Recessive
Onset 16-18 days
Rapid progression of ataxia — tiptoe gait / limb grasping
Paralysis 24-25 days — death

No phenotype in heterozygous animals (18m)




Bella - apoptotic cells in GCL

Bella/Bella Bella/Bella BellaIBe_iIa

Blue — DAPI,
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3Rs in mouse modelling

e Reduction
« Animals used for multiple purposes — e.g. behav/path
e Genomics / SNPs for genetic mapping

* Refinement
» Optimisation of behavioural methods
« Monitoring of new mutants / crosses

* Replacement

o Cell culture modelling / primary cell culture
» e.g. culture GCs longer than lifespan of Bella mice
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ENU mutagenesis resource - future

Continuing to generate dominant and recessive mutants
Modifier screens (HD / ALS)

Generate null / gain / loss-of function mutations — allelic series
Endogenous loci — no copy nhumber / promoter problems
Gene-driven screen

« Screen gene of interest from 9000 DNA samples

* Rederive mouse from frozen sperm

« Assay for mutation function?

Sequence genomes?
Ageing programme
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Conclusions

« Generating new insights into neurodegeneration using mouse
models

 Validity of model
 Mutant lines are complementary to KO studies
* Future:

o Off-the-shelf KOs?

 Human cell lines (iPS cells)
* Non-coding sequences (more functional DNA is nc than pc)
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