Neurodegeneration

Peter L. Oliver MRC FGU, DPAG, Oxford

Health implications of neurodegenerative disease

- Prevalence of dementia rises from 5% to over 30% between the ages of 65 and 85 year old
- Each year 150,000 people in UK develop cognitive impairment and memory loss; within 5 years half will have dementia
- Alzheimer's disease costs the country ~£23 billion per year, approximately 20% of the UK health budget
- Number of people in UK over 60 now out-number those under 16
- Worldwide problem: e.g. China
 - 2009: 130 million people over 60
 - 2040 Estimated to have more people with dementia than the entire developed world put together

Dementia funding does not match the costs

Research spending

Dementia costs more than cancer + heart disease

For every £1 million in care costs for the disease:

£129,269 is spent on cancer research

£73,153 on heart disease research

£8,745 on stroke research

just £4,882 on dementia research.

Mouse modelling of neurodegenerative disease

- AIM: Understand molecular mechanisms / identify therapeutic targets
- Advantages
 - Brain structure / behaviour / in vivo
 - Genetics / manipulation (KO / KI / KD / conditional / inducible)
 - Fast generation times access to tissue / pre-symptomatic
- Disadvantages
 - Models reflect human pathology?
 - Timing late-onset disease expensive

Disease \rightarrow mouse / mouse \rightarrow disease

BAC transgenics as more 'physiological' genetic models

- "Humanised" transgenic mouse models Human disease mutation on mouse KO
- Spatial and temporal regulation of expression e.g. our SNCA Tg mice
- Multiple splice variants expressed e.g. our *MAPT* Tg mice
- Physiological levels of transgene expression

1N 46

Tissue-specific expression

Anwar, Denk, Senior, Johnson, Oliver, Cragg, Wade-Martins

MAPT

Correct protein splicing

six tau isoforms

actin

RNA in situ

α- γ- synuclein double knockout mice show increased dopamine release in striatum

Fast scan cyclic voltametery

α - γ - synuclein double knockouts:

- Two-fold increase in electrically-evoked dopamine release
- No change in dopamine content in striatum
- Increased release probability from synapses
- Hyperactive in novel environment, deficit in spatial working memory

MRC

Behaviour

Open-field activity

Spontaneous alternation

Senior, Anwar, Cragg, Buchman, Wade-Martins

Functional Genomics Unit

Harwell ENU mutagenesis – from mouse to disease gene

Ataxia and movement disorders

- Heterogeneous group of neurological diseases symptoms often progressive and range from minor co-ordination difficulties to an inability to walk
- Prevalence: up to 5 in 100,000
- >50 forms of inherited ataxia
- Genetic cause only identified in one-third of ACDA/SCAs
- Mouse models of ataxia have provided some new insights into disease mechanisms, however no treatments are available

Anti-calbindin

robotic

Anti-calbindin

5 weeks

control

robotic

Behavioural testing

- Ataxia is progressive (6, 10, 20, 40w testing)
 - Accelerating rotarod
 - Static beam
 - Footprint analysis

Mutation detection

• Mutation identified in conserved region of Af4:

Expression of Af4

robotic, 8 weeks

robotic, 42 weeks, anti-calbindin

Robotic - questions

- No obvious link between mutant gene (*Af4*) and phenotype
- Af4 knockout mouse: No ataxia or cataracts or CNS lesions
 - Subtle T-cell developmental defects
 - Robotic therefore gain-of-function?
- ALF proteins putative transcription factors
 - Direct effect of mutation on TA activity?
 - Targets of Af4? / cause of cell death?
 - Expression profiling of *Rob/*+ and +/+ cerebellum
- Protein binding partners of Af4 in the brain
 - Yeast two-hybrid screen with wild-type and mutant Af4 baits
 - Different +ves? / affinity?

Siah proteins

- E3 ubiquitin ligase
- Homologues of Drosophila seven in abstentia (sina)
- Substrate recognition / facilitiates transfer of ubiquitin to target protein for degradation by the proteasome

The robotic mutation is predicted to impair the interaction Siah-1 / Af4

PROTEIN	PEPTIDE	SEQUENCE	
PHYL OBF-1 SIP DCC TIEG1	(108-130) (39-61) (52-74) (1325-1347) (193-215)	QQERTKLRFVAMVRETVRVQPQL ASSGAAPAPTAV LHQPLATYT AELLDNEKPAAV ALITTGYTVK EEAPSRTIPTACVRETHPLRSFA VEAARKNIPCAALSINRSKCERN	BUTATED RESIDUE POPERTKLRPYAMYRPTYRYOPO DE 25-T TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
NUMB EF1- δ Vav Kid N-CoR FIR	(334-356) (126-148) (640-662) (518-540) (131-153) (353-375)	FSSAPMTK VTV A QSPTFQAN APQTQHVSSMRQVEIPAKKPATP ATNEVGWF CNR R YVHGPPQD TVTGAKPLKK V M LQLIQEQA VSDSHFQRISAA LILVHTLPEG VMAAQAPGVITG T ARPPIPVI	$\begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ $
consensu	as motif	P-A- V-P	House et al. PNAS 2003
	mouse Aff robotic A human AF4 mouse Fm1 human FM4 mouse Lat human LA4 mouse AF5 human AF5 Fugu ruba	IQQKPTAYVRPMDGQDQARAf4QQKPTAYARPMDGQDQARIQQKPTAYVRPMDGQDQAR2QQKPTAYVRPMDGQDQAR2QQKPTAYVRPMDGQDQAR2QQKPTAYVRPMDGQDQAR4QQKPTAYVRPMDGQDQAR54QQKPTAYVRPMDGQDQAR54QQKPTAYVRPMDGQDQAR54QQKPTAYVRPMDGQDQAR54QQKPTAYVRPMDGQDQAR54QKPTAYVRPMDGQDQAR54QKPTAYVRPMDGQDQAR54QKPTAYVRPMDGQDQAR54QKPTAYVRPMDGQ54QKPTAYVRPMDGQ54QKPTAYVRPMDGQ54QKPTAYVRPMDGQ54QKPTAYVRPMDGQ	
Function	nal		

MRC Functional Genomics Unit

Robotic mutation blocks degradation of Af4 by Siah

Co-IP in HEK293T cells

Siah mediates Af4 degradation through Ub-proteasomal pathway

Co-IP in HEK293T cells

Accumulation of Af4 in robotic tissues

- How does Af4 regulate transcription?
- How does an increase in Af4 cause neurodegeneration?

Af4: links to chromatin remodelling

- AF4 forms a complex with ENL/AF9 to activate P-TEFb
- 2) P-TEFb phosphorylates Pol II and DSIF/NELF to allow elongation – AF4 also phosphorylated
- 3) ENL/AF9 associates with H3
- 4) Recruitment of DOT1 for H3 methylation K79 Pol II elongation through open chromatin
- 5) ENL/AF9 phosphorylated and degraded releasing AF4
- Transcriptional targets?
- Cause of cell death in robotic?

Expression profiling of the robotic cerebellum

- RNA purified from laser-capture micro-dissected Purkinje cells:
 - Af4 specifically expressed in Purkinje cells
 - 4 +/+ 4 Rob/+ mice used at 3 weeks of age
 - 2,500 cells (8 hours+) individually dissected from cerebellar sections
 - Total of 8-12ng of RNA purified
 - Affymetrix whole genome chips hybridised (Sheena OXION)
 - Data / pathway analysis

New targets regulated by Af4

- Expression changes confirmed by qRT-PCR IGF-I down-regulated
- IGF-I confirmed as target for Af4 (repression)
- Af4 critical regulator of IGF-I signalling pathway

Bitoun & Finelli et al. J.Neurosci

Moonwalker

- Ataxic gait, retropulsion on smooth surface
- Smaller size (60-70%)
- Late-onset PC loss hemispheres more susceptible
- Rotarod testing: similar performance to WT
- Static rod testing: performs badly

Moonwalker - characterisation and cloning

- Point mutation identified in conserved residue of Trpc3 cation channel highly expressed in Purkinje cells
- Electrophysiology channel is over-active (Maike Glitsch)
- Organotypic slice cultures defects in PC development
- Ataxia patient screening
- Role of TRPC3 in calcium signalling

Becker et al. PNAS

Bella

- Severe ataxia
 - Recessive
 - Onset 16-18 days
 - Rapid progression of ataxia tiptoe gait / limb grasping
 - Paralysis 24-25 days death
 - No phenotype in heterozygous animals (18m)

Bella - apoptotic cells in GCL

Blue - DAPI, Green - TUNEL

3Rs in mouse modelling

- Reduction
 - Animals used for multiple purposes e.g. behav/path
 - Genomics / SNPs for genetic mapping
- Refinement
 - Optimisation of behavioural methods
 - Monitoring of new mutants / crosses
- Replacement
 - Cell culture modelling / primary cell culture
 - e.g. culture GCs longer than lifespan of Bella mice

ENU mutagenesis resource - future

- Continuing to generate dominant and recessive mutants
- Modifier screens (HD / ALS)
- Generate null / gain / loss-of function mutations allelic series
- Endogenous loci no copy number / promoter problems
- Gene-driven screen
 - Screen gene of interest from 9000 DNA samples
 - Rederive mouse from frozen sperm
 - Assay for mutation function?
- Sequence genomes?
- Ageing programme

Conclusions

- Generating new insights into neurodegeneration using mouse models
- Validity of model
- Mutant lines are complementary to KO studies
- Future:
 - Off-the-shelf KOs?
 - Human cell lines (iPS cells)
 - Non-coding sequences (more functional DNA is no than pc)

Acknowledgements

Robotic:

Emmanuelle Bitoun, Mattea Finelli , Adrian Isaacs, Ally Potter, Sheena Lee

Moonwalker:

Esther Becker, Maike Glitsch, Pat Nolan, Lizzie Fisher

> Bella: Mattea Finelli, Darcy Butts

MRC Harwell: Lucie Vizor, Michelle Stewart, MLC staff, FESA, Steve Brown

DPAG AH staff

Kay Davies Richard Wade-Martins

peter.oliver@dpag.ox.ac.uk

http://www.neuroscience.ox.ac.uk/

http://opdc.medsci.ox.ac.uk/

