Part A: Introduction to statistical software #### WEEK 1 - A1 Introduction to statistics using R, Stata & SPSS (prerequisites: no prior knowledge of statistics required) - A2 Power & sample size calculations (prerequisites: module A1 quiz) | Module | Lecture Title | Lecture Content | Online Practical | |--------|--|---|--| | | | | Tutorial Title | | A1 | LA1.1 Introduction to statistical software | Welcome to R, SPSS or Stata | PA1.1 Introduction to statistics | | A1 | LA1.2 Introduction to statistics | Data types and distributions Descriptive statistics (central tendency, SD, histograms, box plots) Normal distributions | PA1.1 Introduction to statistics | | A1 | LA1.3 Statistical inference | Concept of estimationSE, confidence intervals | PA1.1 Introduction to statistics | | A1 | LA1.4 Hypothesis
testing I | Hypothesis tests involving means and difference in means (z-test, t-tests) Interpreting hypothesis tests & p-values Practical versus statistical significance | PA1.1 Introduction to statistics | | A2 | LA2.1 Power & sample size calculations | The concept of power Calculations of power and sample size for different study designs | PA2.1 Power & sample size calculations | ## Part B: Analysis of continuous outcomes #### WEEK 2 • **B1 Linear regression** (prerequisites: module A1 quiz) | Module | Lecture Title | Lecture Content | Practical Tutorial
Title | |--------|--------------------------------|---|-----------------------------| | B1 | LB1.1 Simple linear regression | Linear correlation Simple linear regression One-way ANOVA and overall F-tests | PB1. Linear regression | | B1 | LB1.2 Multivariable linear | • | Multiple linear regression | PB1. Linear | |----|----------------------------|---|--------------------------------------|-------------| | | regression | • | F-tests for testing coefficients and | regression | | | | | comparing models | | | | | • | Regression diagnostics | | #### WEEK 3 - **B2** Hypothesis testing II (prerequisites: module A1 quiz) - B3 Non-parametric measures (prerequisites: module A1 quiz) | Module | Lecture Title | Lecture Content | Practical Tutorial
Title | |--------|--------------------------------------|---|-------------------------------------| | B2 | LB2.1 Hypothesis
testing II | ANCOVA MANOVA MANCOVA Corrections for multiple comparisons | PB2. Hypothesis testing II | | B2 | LB2.2 Repeated measures | How to conduct analyses for paired data Paired t-tests Repeated measures ANOVA | PB2. Hypothesis testing II | | В3 | LB3.1 Non-
parametric
measures | When to use non-parametric methods Mann-Witney U, Wilcoxon signed rank, Kruskal-Wallis, Friedman test, Spearman's rank order correlation Non-parametric tests for repeated measures Displaying results from non-parametric tests | PB3. Non-
parametric
measures | # Part C: Analysis of binary and survival data ### Week 4 - C1 Binary data and logistics regression (prerequisites: module A1, B1 quizzes) - C2 Survival data (prerequisites: module A1, B1, C1 quizzes) | Module | Lecture Title | Lecture Content | Practical
Tutorial Title | |--------|--------------------------------------|---|-----------------------------| | C1 | LC1.1 Prevalence, risk, odds & rates | Binomial & Poisson distributions Calculation of prevalence, risk, odds, rate Calculation and interpretation of Cl for risks, ratios and rates Chi-square test; Fisher exact test Cochran-Armitage test for linear trend | PC1. Logistic regression | | C1 | LC1.2 Logistic regression | Logistic regression for binary,
continuous or categorical exposures Multiple logistic regression | PC1. Logistic regression | | C2 | LC2.1 Introduction to survival data | Characteristics of survival and time-
to-event data Kaplan-Meier method and the log-
rank test | PC2. Survival
data | |----|--|---|-----------------------| | C2 | LC2.2 Regression for rates & survival data | Poisson regressionCox proportional hazards regression | PC2. Survival data |