
COMMUNITY PAGE

Open Access Target Validation Is a More
Efficient Way to Accelerate Drug Discovery
Wen Hwa Lee*

Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United
Kingdom

* wenhwa.lee@sgc.ox.ac.uk

Abstract
There is a scarcity of novel treatments to address many unmet medical needs. Industry and

academia are finally coming to terms with the fact that the prevalent models and incentives

for innovation in early stage drug discovery are failing to promote progress quickly enough.

Here we will examine how an open model of precompetitive public–private research part-

nership is enabling efficient derisking and acceleration in the early stages of drug discovery,

whilst also widening the range of communities participating in the process, such as patient

and disease foundations.

Open Innovation: Fifty Shades of Grey?
The rate at which new drugs are being discovered has flatlined despite massive investment in
research and development (R & D) and new technologies, and there is a common belief that
the pharmaceutical business model might be flawed [1,2]. Despite a recent upward trend, the
number of “first-in-class” therapies has not changed significantly. The fundamental problem is
that our understanding of human biology and pathophysiology is too poor to be able to predict
the right drug targets for the right patient populations. Therefore, the widespread aversion of
institutions and public and private funders to share information prior to and after publication
and the overprotection of intellectual property in order to provide return on investment are
amongst the most counterproductive practices to the discovery of new medicines. This strategy
is at odds with the evidence for enhancing commercial outcomes as well. Most universities lose
money through their technology transfer activities [3] with some notable few exceptions. Most
start-up companies do not have a patent at the outset, and it is common that current patenting
activities are used to restrict and limit possible uses of underdeveloped discoveries [4]—a true
Tragedy of the Anticommons.

In the last decades, the pharmaceutical industry has accessed many innovative ideas and
products through mergers, takeovers, and in-licensing. This trend follows the concepts of
Open Innovation, as defined by Chesbrough [5,6], in which companies improve their competi-
tiveness by entering into open external partnerships. However, Open Innovation appears to
have had very little impact on the trajectory of drug discovery, presumably because such
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partnerships most often only involve inward flow of knowledge or exclusive exchanges between
a limited number of partners. On occasion, they involve outflow of assets, but these assets are
typically restricted to a few appointed groups and with strings attached. Open Innovation as
exercised above is an advance, but its true impact remains to be seen.

On the other hand, there are several initiatives in the biomedical research area that are true
to the public’s understanding of the term “open” and that practice a genuine open access or
open source and precompetitive scientific commons approach. These projects appear to have
had significant impact, and some have been transformational, including the Single Nucleotide
Polymorphisms Consortium (1999; [7]), the International HapMap Project (2002; [8]), the
Open Source Malaria Project (2011; [9]), and the Structural Genomics Consortium (SGC)
(2003; [10]; www.thesgc.org).

It is important to reiterate that drug discovery is a long and intricate process with different
types of challenges and thus different approaches. In the early hypothesis generation stages, it
makes sense for different communities to join efforts to create novel, open research tools that
can be used by everyone [11]. This is in contrast to late, derisked stages, where different groups
can begin development of their own proprietary products [12]. As such, we will be examining
the impact of open access in early stages of drug discovery, especially in target discovery and
validation, as these are strong indicators of success in creating new medicines.

Open Access to Eliminate Choke Points in Early Target Discovery
The SGC was formed in 2003 with the open access ethos as its core tenet and has since cata-
lysed research in new areas of human biology and drug discovery by focusing to a large extent
on less well-studied areas of human biology and disease. The SGC, strongly supported by its
pharmaceutical industry partners, places all its research output and reagents, including indus-
try-standard small molecule chemical inhibitors (probes) in the public domain without restric-
tion on use. These are used widely to interrogate protein targets and signalling pathways to
further our understanding of disease mechanisms, for instance.

The establishment of a precompetitive and patent-free consortium has had many advan-
tages; some were obvious and others unexpected. What was clear at the outset was that adher-
ing to open access principles allowed cross-leveraging of public and private funds to explore
novel areas of human biology in an organised way, thus reducing duplication and sharing the
risks and costs that no single institution could bear alone. It was also clear that it would place
the emphasis on the science and on accelerating the transfer of knowledge to the scientific com-
munity, rather than on commercial interests. The SGC has disseminated tens of thousands of
cDNA clones and thousands of samples of several chemical inhibitors, with hardly any transac-
tional costs. Hundreds of academic papers report the use of SGC-generated reagents, and
across the pharmaceutical and biotechnology sectors, SGC reagents are used daily to advance
internal drug discovery programs.

What was less appreciated was the extent to which the consortium’s position would resonate
with the academic and clinical communities. The SGC collaborative network now comprises of
scientists in hundreds of institutions around the world—all of whom have committed to the
open access principles and who contribute their ideas and results to the public domain. The
value of this collaborative network and of the network of academics making discoveries with
SGC chemical probes is difficult to quantify, but a rough comparator is the fact that industry
typically budgets hundreds of thousands of dollars to fund and manage even a single collabora-
tion. Given that the SGC collaborates with over 300 different laboratories and has disseminated
over 4,000 samples of chemical probes so far, one may argue that its open-access network pro-
vides hundreds of millions of dollars of value.
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Open Access Drives Faster Pioneering Science
Epigenetics is an exciting area of biology that has gained a large degree of attention over the
last few years, holding a vast potential for drug discovery [13]. However, despite there being
more than 400 proteins known to be involved in epigenetic regulation [14], as of 2010, only
one target family, histone deacetylases (HDACs), comprised of more than 20 proteins, had
been targeted by cell active inhibitors in the public domain.

Appreciating that the other proteins and protein families implicated in epigenetic regulation
were likely important, in 2005, the SGC began to purify them and solve their 3-D structures. In
2009, after having made significant progress, GlaxoSmithKline (GSK) approached SGC with
the “outside-the-box” idea to design highly-potent, highly-selective inhibitors of these proteins
using structure-guided methods and to provide them to the community without restrictions.
The concept was that these probes would be rapidly used by the community to help define the
roles of the proteins in human biology, as exemplified by past experiences with similar ap-
proaches in the field of probes for nuclear receptors [11]. With funding from the Wellcome
Trust and the Ontario government, and medicinal chemistry expertise from industrial part-
ners, the project was launched and focused on underexplored protein families such as lysine
demethylases (KDMs; [15–19]), histone methyltransferases (HMTs; [20–24]), and Bromodo-
mains [25–27] (full list of SGC probes: www.thesgc.org/chemical-probes/epigenetics).

The open access model provided the framework to receive invaluable advice from scientists
at GSK about the bromodomains protein family. Based on insights from GSK scientists, we ini-
tiated a collaboration on the role of the BRD4 bromodomain in NUT midline carcinoma—an
incurable rare cancer. Within 11 months, a small molecule called SGCBD01 (aka JQ1) was de-
signed, synthesised, and used to show that inhibition of BDR4 promoted both differentiation
and apoptosis of patient-derived primary cells [28,29].

The rapid progress made with bromodomains is a testament to the power of open access,
but the true value of open science emerged once SGCBD01 or JQ1 and additional probes by
GSK (I-BET) [30] and Pfizer (PFI-1) [31] were distributed to the community. Within half a
year, these compounds were used by the community to link bromodomains to septic shock
[30], leukaemia [32,33], multiple myeloma [34], cardiac hypertrophy [35,36], HIV infection
[34,37,38], and MYC regulation [34,38].

Open Access Generates Pioneering Drug Programmes and Clinical
Studies Quicker—for Everyone
Discoveries based on the use of small molecule probes are highly valued by industry and acade-
mia, and experience shows that availability of potent, specific, drug-like chemical compounds
(probes) increases the chances of final success in drug discovery programs [11]. The probes en-
able the definition and validation of targets and pathways, using experimental systems that re-
semble final and approved therapeutic modalities, in its cellular context [39]. The aim of the
SGC in producing open-access chemical probes was to spur and accelerate innovative drug dis-
covery (Fig 1). The breadth, depth, and reproducibility of numerous studies enabled by high-
quality BET bromodomains chemical probes led to the registration of the first clinical trial
aimed at this class of proteins by GSK in April 2012 (Clinical Trial Registration:
NCT01587703), 16 months after the seminal publication on targeting BRD4 histone reader
with SGCBD01 or JQ1 (28). Currently, there are twelve clinical trials with BET bromodomains
inhibitors registered (Table 1).

It is interesting to note that until early 2015, nine out of ten trials (GSK’s being the excep-
tion) were registered by either a small biotech or start-up company. In one notable example,
the clinical candidate (CPI-0610) used in three different trials was developed in partnership
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with a nonprofit, patient-driven organisation—The Leukaemia and Lymphoma Society. As
such, one could argue that the open model is challenging the established system by enabling a
wider range of groups to easily and quickly access innovation. This leads to a more efficient
route to attract incentives and rewards, especially in the fragile interstice of “valley of death” in
drug discovery.

Open Access Invigorating Patient-Driven Research—The Most
Transformative Impact
The open access model has had system-wide impact in biomedical science and drug discovery.
This is tremendously exciting, but what we are now interested in exploring is whether we can
make a much bigger impact if the open access model is combined with the determination and
focus of patient-driven initiatives.

Open access initiatives and patient and disease foundations share a common focus—to ad-
vance science toward a cure. For most patients and their families, issues of ownership and prof-
it are irrelevant. This holds especially true for foundations of untreatable or rare conditions

Fig 1. Open science accelerates identification of the best targets and drug indications, in the correct patient population. The Closed (upper half)
model is compared to the Open (lower half) model; the availability of open access chemical tools for novel proteins and the freedom to operate enable the
global community to explore different indications and diseases in parallel and quickly share back through publications. The breadth and depth of the studies
in the open model lower the risks of failure in subsequent stages in a typical drug discovery programme, allowing the scientists to focus on the most promising
indications, whilst reducing the level of effort (open squares), wastage, and duplication engendered by secrecy of the closed models.

doi:10.1371/journal.pbio.1002164.g001
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Table 1. Clinical trials targeting bromodomains and registered on ClinicalTrials.gov (National Library of Medicine and National Institutes of Health,
United States), as of 1 January 2015.

NCT Number Title Conditions Molecule Sponsor or
Collaborators

Phases First
Received

NCT01587703 A Study to Investigate the
Safety, Pharmacokinetics,
Pharmacodynamics, and Clinical
Activity of GSK525762 in
Subjects With NUT Midline
Carcinoma (NMC) and Other
Cancers

Carcinoma, midline Drug:
GSK525762

GlaxoSmithKline Phase 1 3 April 2012

NCT01713582 A Phase I, Dose-finding Study of
the Bromodomain (Brd) Inhibitor
OTX015 in Haematological
Malignancies

Acute leukaemia, other
hematological malignacies

Drug: OTX015 OncoEthix Phase 1 22 October
2012

NCT01949883 A Phase 1 Study Evaluating
CPI-0610 in Patients With
Progressive Lymphoma

Lymphoma Drug: CPI-0610 Constellation
Pharmaceuticals, The
Leukaemia and
Lymphoma Society

Phase 1 10
September
2013

NCT01987362 A Two Part, Multicenter, Open-
label Study of TEN-010 Given
Subcutaneously

Solid tumors Drug: TEN-010 Tensha Therapeutics Phase 1 5 November
2013

NCT02157636 A Phase 1 Study Evaluating
CPI-0610 in Patients With
Previously Treated Multiple
Myeloma

Multiple myeloma Drug: CPI-0610 Constellation
Pharmaceutical, The
Leukaemia and
Lymphoma Society

Phase 1 28 May
2014

NCT02158858 A Phase 1 Study Evaluating
CPI-0610 in Patients With Acute
Leukaemia, Myelodysplastic
Syndrome, or Myelodysplastic/
Myeloproliferative Neoplasms

Acute Myeloid Leukaemia
(AML), Myelodysplastic
Syndrome (MDS),
Myelodysplastic/
Myeloproliferative Neoplasms
(MDS/MPN)

Drug: CPI-0610 Constellation
Pharmaceuticals, The
Leukaemia and
Lymphoma Society

Phase 1 5 Jun 2014

NCT02259114 A Phase IB Trial With OTX015, a
Small Molecule Inhibitor of the
Bromodomain and Extra-
Terminal (BET) Proteins, in
Patients With Selected
Advanced Solid Tumors

NUT midline carcinoma, triple
negative breast cancer, non-
small cell lung cancer with
rearranged ALK gene/fusion
protein or KRAS mutation,
Castrate-resistant Prostate
Cancer (CRPC), pancreatic
ductal adenocarcinoma

Drug: OTX015 OncoEthix Phase 1 3 October
2014

NCT02296476 A Trial With Dose Optimization
of OTX015 in Recurrent
Glioblastoma Multiforme (GBM)
Patients

Glioblastoma ultiforme Drug: OTX015 OncoEthix Phase 1
Phase 2

3 October
2014

NCT02303782 A Study Assessing tOTX015 in
Combination With Azacitidine
(AZA) or AZA Single Agent in
Patients With Newly-diagnosed
Acute Myeloid Leukaemia (AML)
Not Candidate for Standard
Intensive Induction Therapy
(SIIT)

AML Drug: OTX015,
Drug: Vidaza
(azacitidine)

OncoEthix Phase 1
Phase 2

24
November
2014

NCT02308761 A Dose Escalation and Cohort
Expansion Study of TEN-010 in
Patients With Acute Myeloid
Leukemia and Myelodysplastic
Syndrome

AML, MDS Drug: TEN-010 Tensha Therapeutics Phase 1 14
November
2014

(Continued)
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such as Fibrodysplasia Ossificans Progressiva (FOP; “Stone Man Syndrome”) and Adult Poly-
glucosan Body Disease (APBD).

Could marrying the SGC open-access approach to drug discovery with the dedication and
focus of disease foundations result in faster advances? We believe so.

FOP United Kingdom, the foundation supporting research into FOP, worked with the SGC
and its collaborative network on structure-based development of inhibitors for ACVR1, a ki-
nase for which specific mutation has been identified of the disease [40,41], as well as for the un-
derstanding of mutant phenotypes [42]. Molecules from this partnership are now being
optimised for future clinical studies.

Most recently, the SGC and CHDI Foundation have teamed up to discover and characterise
new drug targets for Huntington’s disease (HD). In this first partnership of its kind, both have
explicitly agreed not to file for patents on any of the collaborative research and to make all re-
agents and knowledge available without restriction [43]. This is a pioneering move by CHDI
and establishes a template for how patient-orientated funders can help the research community
develop new drugs—in fact, the Ontario Brain Institute has already entered into a similar
agreement with the SGC, to further research on Rett’s syndrome.

Finally, participation of patients and disease foundations is also pivotal for the establish-
ment of anonymised primary cell and tissue open platforms. This will accelerate generation of
robust, clinically meaningful assays to profile molecularly-targeted probes using phenotypic
and biomarker readouts linking novel targets to new indications [39].

Open Access and Potential Pitfalls
One curious behaviour is that the scientific community has been giving a disproportionately
large focus on earlier tools rather than exploring other open probes available so far, probably
reflecting the established risk aversion we encounter in biomedical research [44]. Therefore,
even though open access can accelerate investigation of novel biology, it is important for the
community to be aware of this trend and to cover more efficiently all the novel tools and target
areas that are being enabled by open initiatives.

Expanding the Open Access Ecosystem
The main tenets of precompetitive, patent-free and open-access research have enabled the es-
tablishment of a new dynamic ecosystem, not confined to biomedicine alone. The open access
ethos ensures a high degree of crosstalk between sectors, including more than 300 academic

Table 1. (Continued)

NCT Number Title Conditions Molecule Sponsor or
Collaborators

Phases First
Received

NCT02369029 An Open-label, Non-randomized,
Multicenter Phase I Dose
Escalation Study to Characterize
Safety, Tolerability,
Pharmacokinetics and Maximum
Tolerated Dose of BAY 1238097
in Subjects With Advanced
Malignancies

Neoplasms Drug:
BAY1238097

Bayer Phase 1 17 February
2015

NCT02391480 A Phase 1 Study Evaluating the
Safety and Pharmacokinetics of
ABBV-075 in Subjects With
Advanced Cancer

Advanced cancer, breast
cancer, non-small cell lung
cancer, AML, multiple
myeloma

Drug: ABBV-
075

AbbVie Phase 1 12 March
2015

doi:10.1371/journal.pbio.1002164.t001
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groups, government agencies, biotech companies, start-ups, entrepreneurs, lawyers, econo-
mists, social scientists, and patients, all working together to expand the impact of open access
drug discovery (S1 Fig). The last ten years have been exciting and rewarding with a future that
looks bright and even more promising—for science, for patients, and for society as a whole;
what are you waiting for? Join us!

Supporting Information
S1 Fig. The SGC super network. The SGC’s Open Access model is transformative and encour-
ages crossfields, cross-sector interactions to accelerate drug discovery and advancement of
basic biology. This has resulted in the establishment of a network of collaborations and proj-
ects, covering a wide range of initiatives implemented alongside strategic partners. For a full
overview of the SGC’s scientific coverage, please refer to www.thesgc.org.

• Human tissue platforms and Inflammation: exploring biology of novel proteins using pa-
tient-derived primary cells and tissues.

• Target Enabling Packages (TEPs): generating open access “toolkits” (structures, assays, pro-
teins, chemical starting points, etc.) to allow exploration of novel, genetically
validated targets.

• Structural parasitology & neglected diseases: using structure-based methodologies and sci-
ence to advance development of novel treatments [http://www.thesgc.org/sddc].

• Rare diseases: expanding the understanding of structure and function of the associated pro-
teins as well as the effects of disease mutations [http://www.thesgc.org/science/rare-diseases].

• Patient & disease foundations: working together with focused networks of disease specialists
to further increase knowledge in structural biology and functional and chemical spaces
around implicated proteins [Dolgin, Nat Med 2014].

• Kinase inhibitors for human & plant sciences: facilitating the cross-sector use of open-ac-
cess chemical probes targeting basic biology [Knapp et al., Nat Chem Biol 2013].

• Open clinical proof-of-concept: expanding the precompetitive, patent-free model towards
phase II clinical proof-of-concept [Norman et al., Sci Transl Med 2011a, 2011b].

• Start-ups & incubators: creation of open access toolkits for pioneer biology and dynamic en-
trepreneurial communities have already resulted in creation of independent start-ups.

• Ethics & economics: open-access model has created new paradigms around the philosophy
and practical and economic aspects of discovering novel treatments and medicines.

• Governments & policymakers: availability of a model that can expedite drug discovery and
reduce its cost is of interest for governments, always under pressure to address societal
healthcare needs.
(TIF)
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