Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers from the Universities of Oxford and Dundee have made a discovery that helps explain why variations in the virus causes COVID-19 to spread so rapidly.

Artist's impression of a mutating coronavirus

Coronaviruses are so named because of the spikes on their surface that make it look like a crown, the Latin word for which is corona. The virus uses these spikes to attach to and enter cells, where they then replicate. All common SARS-CoV-2 variants have mutations in the part of their spike proteins that binds to cells.

The Oxford-Dundee team found that most, but not all, of the common mutations in spike individually strengthened binding to ACE2, a protein found on the surface of our cells.

Furthermore, ACE2 variants found naturally in humans were shown to strengthen binding between it and the virus, suggesting that individuals with common ACE2 variants could be more susceptible to COVID-19 infection.

Read the full story on the University of Oxford website.