Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new paper from Department of Physiology, Anatomy & Genetics's Centre for Neural Circuits and Behaviour has shown how males and females are programmed differently in terms of sex.

The brains of a male and female fly merged together shows an intertwined network of neurons in roughly the same position, demonstrating that neural activity in each brain is similar yet subtly different.
A sexually dimorphic doublesex-expressing neuronal cluster in the brain. The male (green) and female (magenta) corresponding clusters are co-registered onto a template brain (blue)

The evolutionary biologist Olivia Judson wrote, “The battle of the sexes is an eternal war.”  

In most animal species, the costs associated with reproduction differ between the sexes: females often benefit most from producing high-quality offspring, while males often benefit from mating with as many females as possible. As a result, males and females have evolved profoundly different adaptations to suit their own reproductive needs. So, how does selection act on the nervous system to produce adaptive sex-differences in behaviour within the bounds set by physical constraints, including both size and energy, and a largely shared genome?

A new study from the Goodwin group (Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy & Genetics) led by Dr Tetsuya Nojima and Dr Annika Rings, offers a solution to this long-standing question by uncovering a novel circuit architecture principle that allows deployment of completely different behavioural repertoires in males and females, with minimal circuit changes.

Read the full story on the Department of Physiology, Anatomy & Genetics website.

The story is also featured in the Oxford Science Blog 'Males and females are programmed differently in terms of sex'.