Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers in the Sir William Dunn School of Pathology have identified a mechanism by which the rod-shaped bacterium, Pseudomonas aeruginosa, can evade antibiotics by surrounding its cells with a self-made protective casing.

None

Pathogenic rod-shaped bacteria are responsible for causing many human infectious diseases such as meningitis and cholera. A wide variety of these bacteria are becoming tolerant to current antibiotics, rendering treatments ineffective. It is therefore of critical importance to understand the mechanisms used by these bacteria to evade antibiotics.

Abul Tarafder and colleagues from Tanmay Bharat’s group in the Dunn School have identified a mechanism by which the rod-shaped bacterium, Pseudomonas aeruginosa, can evade antibiotics by surrounding its cells with a self-made protective casing. The bacteria produce a symbiotic filament-shaped phage, Pf4, that phase-separates into spindle-shaped liquid crystals. These encapsulate bacterial cells, preventing effective concentrations of antibiotic reaching the cell, thus ensuring bacterial survival. Interestingly, the authors found that this phage-mediated antibiotic tolerance mechanism is profoundly influenced by biophysical size and shape complementarity rather than the biochemical properties of the phage and bacteria, as the phage liquid crystals could encapsulate inanimate rods of comparable size to bacteria.

Read more on the Sir William Dunn School of Pathology website